
 An Approach to Integrated Cognitive Fusion
 G. Jakobson L. Lewis J. Buford
 Altusys Corp S. New Hampshire University Altusys Corp
 52 Vernon Street 2500 North River Road 52 Vernon Street
 Brookline, MA 02446 Manchester, NH 03106 Brookline, MA 02446
 USA USA USA
 jakobson@altusys.com l.lewis@snhu.edu buford@altusys.com

Abstract � We describe the integration of two technologies to
achieve cognitive fusion--the dynamic analysis of data combined
from multiple sources in order to recognize complex dynamic
situation patterns, construct models or hypotheses of unfolding
situations, and take action in response to situations. The two
technologies are temporal event correlation and case-based
reasoning. We describe both technologies, present an integrated
architecture, and discuss implementation issues. The goal of the
research is to develop a decision-support system for situation
and decision awareness, where domains include battlefield
management, homeland security, environmental sensing, crisis
management, telecommunications management and other
dynamic and information-rich domains.

Keywords: Cognitive fusion, information fusion, situation
awareness, event correlation, case-based reasoning, battlefield
management.

1 Introduction
The focus of this paper is on cognitive fusion within the
context of analysis and reasoning about dynamic
situations. In particular, we are concerned with situations
such as those encountered in the management of a
battlespace, surveillance of complex technological
systems, and mobilization of countermeasures in real-time
emergency situations in health care and homeland security
applications. These applications involve a large number of
dynamic objects that change their state in time, and are
engaged in complex spatio-temporal relations. From the
management viewpoint it is important to understand the
situations in which these objects participate, to recognize
emerging trends and potential threats, and to undertake
protective actions that lead to predefined goal situations.

Although information fusion has been in the focus of
intensive research, particularly in the defense community,
our approach emphasizes two important aspects of
information fusion, cognitive information processing and
fusion of information in dynamic real-time situations. We
define Cognitive Fusion as a process of multi-source data
fusion, where a qualitatively new meaning is assigned to
the fused data. We associate three basic functional
qualities with Cognitive Fusion:

(i) Situation Awareness
(ii) Decision Awareness
(iii) Knowledge Awareness

Situation Awareness is a result of multiple information
processing functions, including:

− Understanding the meaning of multi-media data,
recognizing complex spatial and time-dependent
patterns, and constructing models of situations

− Determining threats, intrusions, hostile activities,
system failures, and other activities that reveal intent or
capability.

Decision Awareness is based on the following functions:

− Reasoning about situations, planning and implementing
actions or action-oriented decisions as part of optimal
management plans

− Informing and advising commanders regarding the
potential ramifications of the suggested actions.

Knowledge Awareness deals with:
− Mining historic operational data, generating new fusion

patterns, discovery of new situation classes
− Learning, and improving the skills and effectiveness of

fusion procedures, situation analysis, and decision-
making procedures.
As a cognitive function we are considering Cognitive

Fusion as a discipline having its roots in Cognitive
Information Processing [1], where the core human
cognitive functions are modeled, including reflection,
reasoning, learning, explanation, and communication. The
term cognitive fusion was used in [2] to denote the fusion
of multi-sensor imagery based on concepts derived from
neural models of visual processing and pattern
recognition. In [3] the principles of cognitive fusion were
applied to enhance the computational algorithms of
moving target recognition.

The above-mentioned cognitive fusion functions could
be mapped to the Level 2 and Level 3 functions of the
JDL Fusion Model [4, 5].

Real-time information fusion deals with time-
dependent events and dynamic situations. Modeling
dynamic situations has been the research focus of several
scientific disciplines, including human factors and
artificial intelligence. Informally, situations were
considered as snapshots of the world at some time instant,
while a strict formal theory offered by artificial
intelligence research was based on non-monotonic
reasoning [6]. The human factors community coined the

term �situation awareness� [7]. In recent years the notion
of situation awareness has found a prominent place in
defense related programs, mostly related to battlefield
management, information fusion, and analysis of sensor
data [8-10]. An ontology of typical battlefield situations
was proposed along with their specification in UML [11].

Our approach to cognitive fusion in dynamic situations
is based on integration of two artificial intelligence
disciplines in which the authors have been involved for
several years: real-time event correlation (EC) [12] and
case-based reasoning (CBR) [13]. EC is a widely
recognized approach for telecommunication network root
cause fault analysis and CBR is an effective paradigm for
reasoning and decision support in applications such as
health care, diagnostics, and law.

This paper is organized as follows. Sec. 2 examines the
role of cognitive fusion in the overall architecture of
fusion, and describes the situations and the dynamic
aspects of situation transition. Sec. 3 discusses the
principles of modeling situations with CBR. Sec. 4
presents the model of information fusion based on real-
time event correlation. Sec. 5 examines the architecture of
cognitive fusion based on distributed component services,
and Sec. 6 outlines future research directions.

2 Cognitive fusion in dynamic situations

2.1 Generalized fusion model
Fig. 1 shows a generalized two-dimensional fusion model.
The horizontal dimension shows the three fusion
functional areas� analysis, reasoning, and acting, and the

Fig. 1. Generalized two-dimensional fusion model

vertical dimensions shows the three fusion perception
levels - signal, data, and cognitive levels. The functional
areas reflect the fundamental processes of purposeful
intelligent behavior: (i) to understand individual features
and entities (objects), object associations, and complex
dynamic situations; (ii) to reason about the object

associations and situations in order to predict changes in
situations and plan required actions, and (iii) to implement
the planned actions, including communication with other
systems and humans. Each of these processes is present in
the three levels of fusion perception, although they are
defined with different levels of abstraction, e.g., the
analysis process at the signal level mostly deals with the
feature extraction and recognition of simple objects; at the
data level the analysis processes aims at recognition of
complex individual objects and core object associations,
while at the cognitive level the task is to analyze complex
dynamic situations.

The three fusion processes form a closed dynamic
operational space management loop (see Fig. 1).
Depending on the objectives, the management of the
operational space might proceed at a lower level of
abstraction, e.g., at the data or signal level. In this paper
our interest is on cognitive level fusion.

2.2 Situations
Informally, a situation is a state of a set of entities at some
particular time. It could be a vector of values of attributes
belonging to one entity or multiple entities. A situation
could also be the state of the relation(s) between one or
multiple entities at some particular time. A simple
situation could be formed by one entity, where one
attribute, for example location, is changing by forming a
series of distinct situations at each consequent time
moment. For example, a tank at a specific location
performing a specific task at a specific time is a situation.
In this example, one of the parameters of the situation will
be Agent_1, whose class type is TANK. The class TANK
is an abstract entity of the domain.

Complex situations are formed over the collection of
entities engaged in multiple relations. Complex situations
may also be constructed from component situations using
Boolean operators. One important factor in the
construction of situations is time management: entities
comprising a situation as well component situations in a
complex situation should comply with the unified time
requirement, i.e., the time values for all attributes of all
entities involved in a situation should fall into a
predefined time interval.

The entities could be active ones, i.e., entities which
change their attribute values over the time, or passive ones
whose attribute values are considered constant over the
observed time period. An active entity is also
characterized by the feature of appearance (possibly �
creation) or disappearance (possibly � destruction) at a
certain time moment. In some battlespace management
tasks it is important to model situations where appearance
and disappearance facts are associated with static entities.
Entities could participate in different class, structural,
containment, connectivity, spatial, organizational and
multiple other domain specific relations, either in binary
or higher order relations. For example,

Entity1 SUBCLASS Entity2
Entity1 LOCATED_AT Entity2,
Entity1 ABOVE Entity2

Cognitive
Level

Data Level
Decision

Signal Level
Decision

Cognitive Level
Decision

Data
Fusion

Signal
Fusion

Cognitive
Fusion

Data Level
Action

Signal Level
Action

Cognitive Level
Action

Operational
Space

Sensors
Radars
Detectors
Human
Intelligence

Controls
Resource
Distributions
Management
Functions

Fusion Functional Areas

Analysis Reasoning Acting

Fusion
Perception

Levels

Data
Level

Signal
Level

Cognitive
Level

Data Level
Decision

Data Level
Decision

Signal Level
Decision

Signal Level
Decision

Cognitive Level
Decision

Cognitive Level
Decision

Data
Fusion
Data

Fusion

Signal
Fusion
Signal
Fusion

Cognitive
Fusion

Cognitive
Fusion

Data Level
Action

Data Level
Action

Signal Level
Action

Signal Level
Action

Cognitive Level
Action

Cognitive Level
Action

Operational
Space

Sensors
Radars
Detectors
Human
Intelligence

Controls
Resource
Distributions
Management
Functions

Fusion Functional Areas

Analysis Reasoning Acting

Fusion
Perception

Levels

Data
Level

Signal
Level

Entity1 SUBORDINATE_TO Entity2
Entity1 TARGETS Entity1
Entity1, Entity2, Entity3 FORM_UNIT Entity4

Each relation has its own attributes, including time. In
addition to the domain specific attributes, the relations
might have algebraic properties, since often, for logical
reasoning purposes, it is important to know whether these
relations are reflexive, transitive, or symmetric.

Attributes in entities may have attached procedures,
which enforce constraints associated with attribute values
or implement computational or symbolic procedures over
the attribute values of the native or remote entity.

2.3 Situation transitions
How situations change is an important aspect of cognitive
fusion modeling. Such changes can be represented by a
situation transition graph (STG) as shown in Fig. 2. Each
node in an STG represents a situation. Directed arcs
represent the transitions from one situation to another
situation. For example in the battlespace context, the
dynamics of the battlespace are represented by an STG
with transitions from one battlespace situation to another.
During this modeling process certain situations are
identified as the start, target, undesirable, and transitional
situations. Other types of situations could be introduced
depending on the objectives of the modeling process. The
importance of such transitions is that the transitions may
be preconditioned by events, which are fused from
multiple events sources. We call these fusion-driven
situation transitions.

Fig. 2 also depicts case-base reasoning (CBR) driven
situation transitions. These transitions, taking advantage
of the analogical reasoning power of CBR, project
potential future situations, which might occur in the

Fig. 2. A situation transition graph: transitions defined by
fusion and CBR

managed operational space. Such projection of future
situations is a key feature in implementing the functions of
situation awareness and threat analysis. We will return to
the mechanism of the CBR driven situation transition in
Sec. 5.1. Both situation transition methods are utilized in
the fusion analysis and reasoning functional areas as
shown in Fig. 1.

3 Modeling situations with CBR
Fig. 3 shows the high-level model of CBR. In general, a
set of events is posed to the CBR system, whereupon four
processes are carried out. First, the set of events is

compared to a library of former situation templates, and a
set of maximally similar cases is retrieved. Thus, the
inputs for the Retrieve module are a set of events and a
case library. In the CBR literature, a number of retrieval
algorithms have been proposed. These are listed as a set of
design options attached to the Retrieve module in Fig. 3.
The simplest and weakest algorithm is key-term matching,
whereas the most complex but strongest algorithm is
analogy-based matching.

The case library can be thought of as a set of former
experiences with situations that are potentially similar to
the situation at hand. However, it is hardly ever the case
that a former situation will be exactly like the current
situation. Typically a former situation has to be tweaked
in some way to render it applicable to the nuances of the
current situation. This is the task of the Adapt module in
Fig. 3, where several design options of the module are
listed. Adaptation by substitution covers those episodes in
which an object that occurs as a descriptor in the current
situation should be substituted throughout for an object
that occurs as a descriptor in the retrieved case.

The Execute module is straightforward. The user may
choose to act on the retrieved/adapted situation. The
execution may be conducted manually or may be carried
out automatically by the decision-maker, either in
supervised or unsupervised mode. In addition, the
execution of an action or plan may involve cooperation
with other individuals.

Importantly, the results of the execution are recorded in

the case and the case is entered back into the case library.
The design options for the structure of the case library are
shown in Fig. 3. In most CBR systems, the case library is
structured as a simple sequential list, much like a stack of
paper forms. Of course, decision-makers do not structure
their problem-solving history in this way. There have been
several proposals for more complex memory structures in
the literature. An interesting proposal is the concept of a

Dynamic
Situation A

Dynamic
Situation B

Fusion Driven
Situation Transition

Dynamic
Situation C

CBR Driven
Situation Transition

CBR Process Fusion Process

Dynamic
Situation A

Dynamic
Situation B

Fusion Driven
Situation Transition

Dynamic
Situation C

CBR Driven
Situation Transition

CBR Process Fusion Process

Retrieve

AdaptAdapt

ExecuteExecute

OrganizeOrganize

Case
Library

Key-term matching
Relevance matching
Deep structure matching
Geometric matching
Analogy-based matching

Adaptation by substitution
Parametric adaptation
Procedural adaptation
Adaptation by abstraction
Critic-based adaptation

Manual execution
Supervised execution
Unsupervised execution
Cooperative execution

Sequential memory
Hierarchical memory
Meshed memory
Belief network
Master cases

Event-driven case
invocation

RetrieveRetrieve

AdaptAdaptAdaptAdapt

ExecuteExecuteExecuteExecute

OrganizeOrganizeOrganizeOrganize

Case
Library

Key-term matching
Relevance matching
Deep structure matching
Geometric matching
Analogy-based matching

Key-term matching
Relevance matching
Deep structure matching
Geometric matching
Analogy-based matching

Adaptation by substitution
Parametric adaptation
Procedural adaptation
Adaptation by abstraction
Critic-based adaptation

Adaptation by substitution
Parametric adaptation
Procedural adaptation
Adaptation by abstraction
Critic-based adaptation

Manual execution
Supervised execution
Unsupervised execution
Cooperative execution

Manual execution
Supervised execution
Unsupervised execution
Cooperative execution

Sequential memory
Hierarchical memory
Meshed memory
Belief network
Master cases

Sequential memory
Hierarchical memory
Meshed memory
Belief network
Master cases

Event-driven case
invocation

Fig. 3. The case-based reasoning architecture

master case. A master case is one in which all the
problem-solving experiences with a particular, well-
defined situation are subsumed in one case. This is in
contrast with the sequential memory in which each
problem-solving experience is confined to a unique case.

Consider a simple abstract example that captures the
essence of the CBR approach to cognition. Suppose a
retrieved case holds a particular decision for a problem
where the decision is based on the value of a variable x in
some event message:

Retrieved Case
Given situation S and parameter x, then
Perform action A(x)
Perform action B(x)
Make decision d = C(A(x) , B(x))

Here, A, B, and C may be functions that take a numeric
parameter x or they may be inferences such as those in
classic expert systems that take a symbolic x as a known
fact. In practice, the user might find that the decision is
inadequate because an additional parameter y appears that
renders the decision unworkable. Further, parameter x in
the input case that represents the current situation might
be some new value of x, say x�. The user might adapt the
plan using parameterized and critic-based adaptation as
follows:

Retrieved Case after Adaptation
Given situation S parameter x� then
Perform action A(x�)
If only parameter x� exists then Perform z = B(x�)
Else if both x� and y then Perform action z = B(x� , y)
Make decision d = C(A(x�) , z)

Note that the adapted case that is organized in the case
library will cover future problem-solving situations in
which only x is available and in which both x and y are
available. Also, it is expected that further experiences with
situation S will enhance the knowledge required to
perform tasks similar to S in future situations. In this way,
the system�s knowledge is improved with experience. This
example shows conceptually four features: First, it shows
how the system exhibits some degree of learning with use.
Second, it shows how alternative interpretations can be
ranked with certainty factors based on the available
information. The interpretation produced when both x and
y are available would have higher rank than when only x is
available, all else being equal. Third, it shows how the
system may uncover impediments or opportunities. The
case may be retrieved when only x is available,
whereupon the system advises the operator regarding the
utility of y or seeks out y automatically.

Finally, the example suggests a way to identify
bottlenecks and quality-of-service problems in
information flow, or meta-fusion functions. Consider
again the action B and suppose the action is a query to an
external database for additional information. The design
could include a response time metric RB whose value
reflects the time that elapses from the execution of B to
the time that the value of z is returned. Alternatively, RB1

could reflect the time that elapses from the directive to
execute B to the actual execution of B, and RB2 could
reflect the time from the execution of B to the return of
value z. One may design into the system a logger that logs
response times of each step of the decision making
process into a historical database. Subsequently, after
some period of time, the database could be analyzed with
OLAP techniques or data mining algorithms in order to
discover the actions that are high time-consumers.

A final consideration: The usual approach towards
populating a case library is to cast a small set of classic
domain-specific situations in the form of cases. In the
literature, such a small set of cases is called a seed case
library. A seed case library is used to jump-start the
growth and fine-tuning of a case library.

A commercial CBR system that embodies the concepts
in this section is described in [13]. The system operates in
the domain of fault management for large heterogeneous
communications networks, where it receives events and
alarms from multiple network management platforms.

4 Information fusion via real-time event
correlation

4.1 Event correlation
Modern sensor systems and information sources may
produce a very large number of events and data. This
leads to serious difficulties in situation management:
− The inability to follow a stream of incoming events:

events may pass unnoticed or be noticed too late
− The incorrect interpretation of events: decision-making

is based on a single event rather than on a macroscopic,
generalized event level

− The incorrect evaluation of events: management staff
concentrate on less important events.
Event correlation is one of the key techniques for

managing high volumes of event messages and to
recognize complex event patterns

We define the task of event correlation as a conceptual
interpretation procedure in the sense that a new meaning is
assigned to a set of events that happen within a predefined
time interval. The procedure could range from trivial
event compression to complex pattern-matching. A typical
event correlation involves dynamic pattern matching over
a stream of events. The correlation pattern may include
relations among objects in a situation, diagnostic test data,
and data from external databases.

Situations unfold in discrete space and time. The time
model used here is discrete time with two modifications:
point time and interval time. In point time, the events take
place at time moments represented as integers in a
predefined time scale. For example, the use of Universal
Time requires that date/time stamps attached to the event
message be reduced to a numeric value in seconds or
minutes. Point time is applied to most actions such as user
commands. In interval time, events are described by two
time moments: the time of origination and the time of
termination. Events corresponding to faults, changes in
system behavior, or changes in the state of sensor or other
control equipment are usually described in interval time.

Depending on the nature of the operations performed on
events, event correlation functional types include:

1. [a, a,�, a] → [a] Compression
2. [a, p(a) ≤ H] → [nil] Filtering
3. [a, C] → [nil] Suppression
4. [n × a] → [b] Counting
5. [n × a, p(a)] → [a, p′(a), p′ ≥ p] Escalation
6. [a, subset(a, b)] → [b] Generalization
7. [a, subset(b, a)] → [b] Specialization
8. [a T b] → [c] Temporality
9. [a, b,�,T, and, or, not] → [c] Logic/Temporality

Event compression (1) is the task of reducing multiple
occurrences of identical events into a single representative
of the events. The number of occurrences of the event is
not taken into account. The meaning of the compression
correlation is almost identical to the single event a, except
that additional contextual information is assigned to the
event to indicate that this event happened more than once.

Event filtering (2) is the most widely used operation to
reduce the number of events presented to the operator. If
some parameter p(a) of event a, e.g., priority, type,
location, time stamp, etc., does not fall into the set of
predefined legitimate values H, then event a is simply
discarded or sent into a log file. The decision to filter
event a out or not is based solely on the specific
characteristics of event a. In more sophisticated cases, set
H could be dynamic and depend on user-specified criteria
or criteria calculated by the system.

Event suppression (3) is a context-sensitive process in
which event a is temporarily inhibited depending on the
dynamic operational context C of the operations
management process. The context C is determined by the
presence of other event(s), available resources,
management priorities, or other external requirements. A
subsequent change in the operational context could lead to
delivery of the suppressed event. Temporary suppression
of multiple events and control of the order of their
exhibition is a basis for dynamically focusing the
monitoring of the operations management process.

Another type of correlation (4) results from counting
and thresholding the number of repeated arrivals of
identical events. Event escalation (5) assigns a higher
value to some parameter p(a) of event a, usually the
severity, depending on the operational context, e.g., the
number of occurrences of the event. Event generalization
(6) is a correlation in which event a is replaced by its
super class b. Event generalization has high utility for
situation management. It allows one to deviate from a
low-level perspective of events and view situations from a
higher level. Event specialization (7) is an opposite
procedure to event generalization. It substitutes an event
with a more specific subclass of this event.

Correlation type (8) uses temporal relation T between
events a and b to correlate depending on the order and
time of their arrival. Event clustering (9) allows the
creation of complex correlation patterns using Boolean
operators over conditional (predicate) terms. The terms in
the pattern could be primary events or the higher-level
events generated by the correlation process. In this paper

we are concerned primarily with the logic and temporality
aspects of event correlation.

4.2 Temporality of event correlation
Formally, an event is a pair [message, time quantifier] in
which the message describes the content of the event and
the time quantifier is a moment in point time or a time
interval reflecting the duration of the event.

Each event correlation process has an assigned
correlation time window, i.e., a maximum time interval
during which the component events should happen. The
correlation process will be started at the time of arrival of
the first component event a and stopped as the last
component event c arrives. Like any other event, each
correlated event has its time of origination, time of
termination, and lifespan. By definition, the time of
origination of the correlation is equal to the time of
origination of the last component event.

Event correlation is a dynamic process in that the
arrival of any component event instantiates a new
correlation time window for some correlation. This means
that the correlation time window slides in time to capture
new options to instantiate a correlation. However, if
temporal constraints are assigned to the component
events, e.g., when event b should be always after event a,
no correlation time window is started when b arrives.

The length of the correlation window and the lifespan
of an event correlation directly affects the potential of
creating correlations. Widening the correlation window
and increasing the lifespan increase the chance of creating
a correlation. For very fast processes, e.g., a burst of
events from multiple signal fusers, the width of the
correlation window could be seconds; while for slow
processes such as analyzing a trend of failures from an
event log file, the correlation window may be several
hours or several days long. The same is true for the
lifespan: informative events could last several seconds
while the lifespan of critical events should be indefinite,
i.e., these events always should be cleared by the operator
or by the system. The right value for the correlation
window and the lifespan emerge from the application of
event correlation to specific domains.

Temporal event correlation plays a critical role in
cognitive fusion. A cognitive fusion system should be able
to reason about the relative and absolute times of
occurrences of events, duration of events, duration of
absences of events, and sequences of events. The time
interval between events can be defined on a quantitative
time scale or on a qualitative time scale.

4.3 Example
The following scenario illustrates how event correlation
rules and invocation of a situation case could be built in an
engine such as described in [9]. Suppose an event of type
A issued at time t1 from a some tank labeled as ?tank1,
but during the following 1-minute (60 second) interval an
expected event of type B was not issued from some tank
?tank2. It is also noted that tanks ?tank1 and ?tank2 form
a unit, where ?tank1 is the leader and tank ?tank2 is the

deputy supporting tank ?tank1. The prefix �?� refers to a
variable.

RuleName: UNIT-SUPPORT-CORRELATION_RULE
Conditions:
 MSG: EVENT-TYPE-A ?msg1
 TANK: ?tank1
 TIMESTAMP ?t1
 Not MSG: EVENT-TYPE-B ?msg2
 TANK: ?tank2
 TIMESTAMP ?t2
 AFTER: TIMESENT ?t ?t1 ?t2 60
 REL SUPPORTED-BY
 LEADER ?tank1
 DEPUTY ?tank2
 Actions:
 Assert: UNIT_COTNACT_LOST_CASE
 ATTRIBUTES
 msg1, ?tank1, ?msg2, ?tank2, ?t

The events to be correlated, then, are A and not-B. Note
that not-B is treated formally as an event. The additional
constraints are that (i) a temporal constraint that the event
not-B comes 60 seconds later than A; this constraint is
implemented using the temporal relation AFTER, and (ii)
tanks are in a unit, where the second tank supports the first
one; this constraint is implemented using a domain
specific relation SUPPORTED_BY.

If the conditions of the rule UNIT_SUPPORT_
CORRELATION_RULE are true, then the request
UNIT_COTNACT_LOST_CASE with the attribute
values msg1, ?tank1, ?msg2, ?tank2, and ?t is sent to the
CBR engine. The CBR engine either accepts the request
as is, or adapts an existing case to match the request
conditions. A system that embodies the concepts in this
section has been tested and fielded in the domain of
telecommunications management [12].

5 Cognitive fusion: an integrated system
architecture

5.1 Realizing an integrated architecture
At the architecture level the integration of event
correlation and CBR presents a number of interesting
challenges that have not been addressed in prior systems.
These challenges include real-time processing,
synchronizing temporal regions of interest, coordinating
the semantic representation used by each system, and
incorporating the modeling of situations in the integrated
EC-CBR system. An early instance of CBR for a real-
time application was described by the second author in
[14].

In this section we discuss two aspects of integrated
cognitive fusion: (i) the aspect of integration on a
conceptual level, where the cognitive fusion functionality
is achieved by integration of EC and CBR, and (ii) on a
system architectual level, where a cognitve fusion service
is architected as a distributed system containing multiple
integrated component services. As it will be shown in Sec.

5.3, cognitive fusion service is a part of a larger dynamic
situation management system.

5.2 EC and CBR integration
As it was discussed in Sec. 2.3 the modeling of dynamic
situations is achieved by situation state transitions. Such
transitions may involve different degrees of complexity
and are the result of event-situation interactions between
the real-time EC and the CBR processes. The main
interaction scenarios that these processes are engaged in
are as follows:

(i) Direct situation update scenario. According to this
scenario the updates, including new attribute values,
creation/deletion of entities, and establishment/
modification/deletion of inter-entity relations, are
performed directly by the CBR process as response to
single events passed through the EC process without
involving event correlation. The updates may also be
performed as requests from management commands,
actions from outside systems, or driven by lifecyle
management processes such as automatic creation/
modification/deletion of entities according to a schedule
or depending on the consumption of internal resources
that the entity possesses.

(ii) Correlation-situation scenario. This scenario,
which corresponds to the fusion-driven transition in Sec.
2.3, is a mode of interplay between the EC and CBR
processes, where the EC process generates a hypothesis
regarding a new situation, and the CBR process attempts
to corroborate the hypothesis by selecting a case, adapting
it to the current conditions, and building a new overall
situation.

(iii) Situation prediction scenario. According to this
scenario, the CBR process determines potential future
situations not as a direct event coming from the EC
process, but rather observing the historic similarity
between situations and using the analogical reasoning
power of CBR to predict potential continuations of the
current situation. This scenario corresponds to the CBR-
driven transitions discussed in Sec. 2.3, and is used for
threat analysis and for prediction of other undesirable
situation transitions.

(iv) CBR feedback scenario. This scenario
encompasses the contextual information that could be fed
back to EC from CBR in case of incomplete or conflicting
information that the EC has. In principle, from the
correlation viewpoint, this feedback information could be
considered just as another �outside� event. An extension
of this CBR function could be a CBR driven situation
simulation environment for training, testing, or other
purposes

Fig. 4 shows an integrated architecture with an event
correlation engine at the front end and a CBR engine on
the back end. Based on the scenarios discussed above, the
design of the conceptual architecture is straightforward.
Fig. 4 emphasizes the flow of information in both
directions between the correlation engine and the CBR
engine. The events that are issued from the correlation

engine are used to invoke cases, or situation templates,
that serve as interpretations of multiple events.

In the reverse direction, as described in the CBR
feedback scenario, a case might suggest additional
contextual information to the EC process, which, if it were
available, would strengthen the hypothesis.

Fig.4. EC and CBR integration architecture

5.3 Distributed services
The foundation for implementation of the cognitive fusion
system is a distributed situation management architecture
(see Fig. 5). The use of standard services or components
with well-defined functionality and standard inter-
component communication protocols allows the building
of open, scalable, and customizable systems. The
encapsulation of the idiosyncrasies of components and the
addition, replication, and replacement of components
provide an effective environment for developing multi-
paradigm, fault-tolerant, and high-performance systems.
Various technologies can be used for building the
infrastructure of distributed systems, e.g., CORBA, RMI,
and Jini [15-17].

We identify Core System Services such as Naming,
Directory, Time, Subscription, and Logging services,
which are used as the major building blocks to build the
Applications Services. There are four types of real-time
application services, the Signal, Data, Event Correlation
and the CBR services, where the last two constitute the
Cognitive Fusion Services.

The architecture in Fig. 5 depicts Topology, Data,
Ontology, and Knowledge Services. In addition, the
architecture includes four more types of services: (i) the

Event Mediation, which performs the connectivity and
protocol conversion functions so that sensor and
intelligence data can reach the Signal, Data, and Cognitive
Fusion services, (ii) Data Adaptation to perform data and
knowledge translation functions, (iii) Data Security, and
(iv) Event Notification.

Different instances of the services can be used as long
as they satisfy overall functional and data semantic
constraints. For performance or functional reasons,
multiple processes of the same service could be launched.
For example, a hierarchy of Event Correlation Services
could be created. This hierarchy could be used to
implement a multilevel Cognitive Fusion paradigm, e.g.,
to implement local and global correlation functions.

 The Event Notification Service enables event-passing
interfaces between distributed objects�the producers and
consumers of events. The interfaces are mediated via
event channels that allow decoupling of producers and
consumers in the sense that they possess no knowledge
about each other. The CORBA standard for the
Notification Service, OMG�s COSNotification Service,
defines several important features of the Notification
Service, including asynchrony, event subscription,
multicast event routing, event filtering, quality of service,
and structured events. The output of one channel can be
chained to the inputs of another channel to create event
notification chains, for example from a Sensor Network to
a Signal Fusion Service, then to a Data Fusion Service, to
a Cognitive Fusion Service and finally, to a Presentation
service. Each of the nodes in a notification chain may
cache events, take actions, perform some transformation
on the events, and forward them along the chain.

Fig. 5. Distributed situation management architecture

Extendable Markup Language (XML) is used for

transporting data and knowledge between distributed
components. XML represents arbitrary semantics as
strings. It is not necessary to predefine the contents of

Event Driven
Case Activation

Case
Memory

Sensor Networks, Primary
 Signal and Data Sources

Cognitive Fusion

Case Driven
Event Correlation

Correlation
Memory

Signal and Data
 Fusion Engines

CBR EngineEC Engine

Situation Discovery
 Construction

Event Analysis
Management

Operational
Situations

Fast Real-Time Event Channel

Data and Knowledge Transfer Channel

Sensor Networks, Primary
Signal and Data Sources Situation Monitoring

Clients

Core System Services (Naming, Directory, Time, Property, Subscription,
Logging, Scripting, etc.)

Java Platform (J2EE, RMI, Jini)

Signal Fusion
Services

Correlation
Services

Data Fusion
Services

CBR
Services

Data
Services

Event
Notification
Services

Topology
Services

Ontology
Services

Knowledge
Services

Cognitive Fusion Services

Fast Real-Time Event Channel

Data and Knowledge Transfer Channel

Sensor Networks, Primary
Signal and Data Sources Situation Monitoring

Clients

Core System Services (Naming, Directory, Time, Property, Subscription,
Logging, Scripting, etc.)

Java Platform (J2EE, RMI, Jini)

Signal Fusion
Services

Signal Fusion
Services

Signal Fusion
Services

Correlation
Services

Correlation
Services

Correlation
Services

Data Fusion
Services

Data Fusion
Services

Data Fusion
Services

CBR
Services

CBR
Services

CBR
Services

Data
Services

Data
Services

Data
Services

Event
Notification
Services

Event
Notification
Services

Topology
Services
Topology
Services
Topology
Services

Ontology
Services
Ontology
Services
Ontology
Services

Knowledge
Services

Knowledge
Services

Knowledge
Services

Cognitive Fusion Services

these strings for the sake of the transport medium, making
XML ideal for transferring data of arbitrary semantics
over CORBA. While the distributed systems will define
their framework in the CORBA Interface Definition
Language (IDL), they will define much of the data
semantics in XML. This approach allows components of
the system to be decoupled in order to support a consistent
knowledge and data transport mechanism.

6 Conclusions and further work
In this paper we propose an integrated approach to
cognitive fusion, which we define as a process of multi-
source data fusion where qualitatively new meaning is
assigned to the fused data using cognitive processing
techniques. We describe a realization of a cognitive
fusion architecture where the two component technologies
are real-time EC and CBR. The former is used for
reasoning about events from the perspective of time, while
the latter is used to model situations. A set of correlated
events may trigger the invocation of a case, where a case
adds further meaning to the set of events and infers a
possible situation. Further, the case may (i) point out
additional information that is needed in order to
strengthen the belief that a specific situation is present and
(ii) offer advice and plans for taking further actions with a
desired outcome in mind.

A simplifying assumption of the paper is that signal
and data-level fusion have already taken place and have
resulted in specifications of discrete events. This task
itself is not trivial, and hard challenges and issues are
expected to surface when the assumption is lifted.

The integrated model of EC and CBR described here
addresses several significant challenges related to how
knowledge used by each system is shared, situation
transitions are decided, and temporal behavior is
coordinated. At the architecture level, the use of CBR in
real-time has seen limited use (a notable exception is
[14]). We describe at a high-level an approach for using
CBR in time-dependent dynamic situation analysis.

The cognitive fusion paradigm opens many interesting
research issues, such as improving the predictive
component of CBR, incorporating assumption-based
reasoning to use cognitive fusion in situations with
incomplete information, and learning new situations.

From the practical system development perspective,
further work includes: (i) establishing a use case model
and accompanying prototype GUIs for actual field
operation in some domain, (ii) verifying and validating the
integration of the two technologies in some domain, and
(iii) providing walk-throughs of system operation.

Acknowledgements
The authors acknowledge Colonel Ed Sherman (Ret) of
the US Army for useful discussions of cognitive fusion,
battlefield management, and situation awareness from the
perspective of the US DoD.

References
[1] Ikuo Tahara, editor. Cognitive Information Processing. IOS

Press, Amsterdam, The Netherlands, 1994.
[2] Allen Waxman, David Fay and Richard Ivey. Multisensor

image Fusion & mining: from neural systems to COTS
software. In Proc. International Conference on Integration
of Knowledge Intensive Multi-Agent Systems, pages 355-
362, Cambridge, MA, 30 September-4 October 2003.

[3] Erik.P. Blasch, Scott N. Watamaniuk, and Peter
Svenmarck. Cognitive-based fusion using information sets
for moving target recognition. In Ivan Kadar, editor, Proc.
Ninth Conf. Signal Processing, Sensor Fusion, and Target
Recognition, SPIE volume 4052, pages 208-217, Orlando:
FL, 24-28 2000.

[4] Franklin White. Data fusion sub-panel report, In Proc. 1991
Joint Service Data Fusion Symposium, volume 1, pages
335-361, 10 October, 1991.

[5] Alan N. Steinberg, Christopher L. Bowman, and Franklin
E. White. Revisions to the JDL data fusion model, In Proc.
NATO IRIS Conf., Quebec, Canada, October 1998.

[6] John McCarthy and Patrick Hayes. Some philosophical
problems from the standpoint of artificial intelligence. In
Donald Michie, editor, Machine Intelligence 4, American
Elsevier, New York, NY, 1969.

[7] Richard D. Gilson. Introduction to the special issue on
situation awareness. Human Factors, 37(1): 3-4, 1995.

[8] Fiora Pirri and Raymond Reiter. Some contributions to the
situation calculus. J. ACM, 46(3): 325-364, 1999.

[9] Hector J. Levesque, Raymond Reiter, et al. GOLOG: a
logic programming language for dynamic domains, J.
Programming, 31: 59-84, 1997.

[10] Dong Wen-Yu, Xu Ke, and Lin Meng-Xiang. A situation
calculus-based approach To model ubiquitous applications.
In arXiv, Cornell University e-print Archive, 2003.

[11] Chris J. Matheus, Mitch M. Kokar, and Kenneth
Baclawski. A core ontology for situation awareness. In
Proc. Sixth Int. Conf. Information Fusion, pages 545 -552,
Cairns, Australia, 8-11 July 2003.

[12] Gabriel Jakobson, Mark Weissman, Leonhar. Brenner,
Carol Lafond, and Chris Matheus. GRACE: building next
generation event correlation services. In IEEE Symp.
Network Operations and Management, pages 701-714,
Honolulu, HI, 10-14 April 2000.

[13] Lundy Lewis. Managing Computer Networks: A Case-
Based Reasoning Approach. Artech House Publ.,
Norwood, MA, 1995.

[14] Lundy Lewis. Method and apparatus for resolving faults in
communications networks. US Patent Number 5,666, 481.
9 September 1997.

[15] Jini Network Technology.
http://wwws.sun.com/software/jini/

[16] Jon Siegel. CORBA Fundamentals and Programming.
John Wiley & Sons, 1996.

[17] Troy B. Downing. Java RMI: Remote Method Invocation,
IDG Books Worldwide, 1998.

