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Abstract - Most ground target tracking problems involve
nonlinear filtering due to nonlinearity in the measurement
model. At present, a quantitative measure of nonlinearity and its
relationship with the performance of the filtering algorithms are
lacking. We quantify the degree of nonlinearity of a filtering
problem using the differential geometry based measures of
nonlinearity such as the parameter-effects curvature and
intrinsic curvature. The algorithm for calculating these two
measures of nonlinearity was first presented for a static least
squares estimation problem. In this paper, we extend the
approach to calculate these two measures of nonlinearity for a
problem involving a linear system dynamic model and nonlinear
measurement model using the maximum likelihood estimator. We
present numerical results using simulated data for the constant

velocity motion of a target with range and azimuth
measurements.
Keywords: Ground target tracking, nonlinear filtering,

differential geometry measures of nonlinearity, parameter-effects
curvature, intrinsic curvature.

1 Introduction

Sensors employed in ground target tracking systems
include the ground moving target indication (GMTI)
radar, synthetic aperture radar (SAR), unattended ground
sensor (UGS), electro-optical (EO) sensor, and infrared
(IR) sensor. The measurements for these sensors are
nonlinear functions of the target state. Even if the target
dynamic model is linear, the filtering problem is nonlinear
due to nonlinearity in the measurement model. If the
dynamic and measurement models are linear with additive
Gaussian noises, then the Kalman filter (KF) [1, 2] is an
optimal estimator in the minimum mean square error
(MMSE) sense and provides closed form solutions.
Closed-form expressions for the conditional mean and
covariance in the KF completely characterize the posterior
Gaussian distribution for the target state. In general, no
optimal or closed form solution exists for the nonlinear
filtering problem. The extended Kalman filter (EKF) [1,
2] is commonly used as an approximate filter when the
target dynamic model or/and sensor measurement model
is/are nonlinear. The EKF retains only the first order term
in the Taylor series expansion of the nonlinear dynamic
or/and measurement models. This linearization can often
introduce large errors in the estimated state and filter
calculated covariance when the degree of nonlinearity
(DoN) and measurement errors are high.

Although the DoN is widely referred to in filtering
problems, a systematic and quantitative characterization is
lacking at present. In this paper, we characterize the DoN

using curvature measures of nonlinearity (CMoN) from
differential geometry. We use two relative curvature
measures of nonlinearity [3-6], the parameter-effects
curvature and intrinsic curvature to characterize the
degree of nonlinearity of a filtering problem. The
linearization used in the EKF represents a tangent plane
approximation to the measurement function or the system
dynamic function at the predicted state. The CMoN
indicate whether the tangent plane approximation used in
the EKF is a good approximation or not for a given
problem. In this paper we analyze the DoN for the
filtering problem where the dynamic model is linear and
the measurement model is nonlinear. This is a common
approach in most ground target tracking problems.

In this paper, we use the symbol “:=" to define a
quantity and J, to represent an nxn idenity matrix. The

outline of the paper is as follows. Section 2 describes the
statement of the problem. Section 3 derives expressions
for the velocity and acceleration arrays [3, 4] needed to
compute the two CMoN and Section 4 defines the two
curvature measures of nonlinearity. Section 5 derives the
curvature measures of nonlinearity using velocity and
acceleration in an arbitrary direction [3, 4]. In Section 6,
we present the dynamic model and nonlinear measurement
model for the 2D range and azimuth measurements for
calculating the parameter-effects curvature and intrinsic
curvature. Finally, Sections 7 and 8 present numerical
results and conclusions.

2 Statement of Problem

Let x, eR” and

measurement at time¢, , respectively. The linear dynamic

z, € R™ denote target state and

model and nonlinear measurement model commonly used
in ground target tracking problems are described,
respectively, by

X =D X W

2-1)

z, =h, (x,)+n,, (2-2)

where @ =0(t,,t,,) is the state transition matrix and

kk-1
Wi =W(l,,t, ) is the zero-mean white Gaussian
integrated process noise. In (2-2), i, :R" — R"and
n, ~ N(0,R,) represent the nonlinear measurement

function and zero-mean white Gaussian measurement
noise, respectively. Taylor series expansion of the



measurement function about the predicted state at time £,

Xy gives

b (x,)=hy ()ek\k—l )+H, ()’ek\k—l )(x, — )’ek\k—l )

(2-3)
+ higher order terms
where
oh,
H, (-)ek\k—l) =—* (xk) (24
axk X=Xy

The EKF [1, 2] uses the linear approximation

hy(x) = by ()’ek\k—l )+H, ()%k\k—l )(x, _)’ek\k—l )- (2-5)

The linear approximation used in the EKF is a valid
approximation if and only if the measurement function is
relatively flat near X and hence the tangent plane

approximation [3, 4] in (2-5) is a valid approximation.
This requires the quantification of the degree of
nonlinearity of the measurement function.

In order to analyze the degree of nonlinearity of a
filtering problem it is sufficient to consider the dynamic
model without the process noise

X = DX (2-6)
and the nonlinear measurement model described by (2-2).
We estimate the initial state of the system 6 = x, at time

¢, processing a collection of N measurements

Zy)-

z:=(z, 2z, 2-7)

The measurement error covariance matrix is diagonal in
most practical tracking problems where

Rk = diag(o-/f,l O-lf,m,( ) (2-8)

We generate dimensionless measurements {y, } by the

mapping

O T P ViC AL VI o )
Uk.i O-k,m O-k_i
Vi =m(x)+v, v, ~N(0,1,). (2-10)

The resulting problem becomes a maximum likelihood
(ML) estimation problem

m

A0 =" p(y]0). (2-11)

0 0
where A(6) is the likelihood of the parameter § . Because

of the structure of measurement model described by (2-2),
we get

ry10)=p(y, », Vi 10)
N (2-12)
=[1r0. 10).
k=1
Using (2-6), we have
x =0, x, =0, 0. (2-13)

Use of (2-13) in (2-10) gives

v, =L@ +v,, k=1.,N, (2-14)
where
[ (@) =1, ((Dk,lg)' (2-15)
The measurement model in (2-14) gives
Py 10)=N(y: [, (0).1,,)
. (2-16)
=S (0D (=11 ()
=[@mymy e T
Maximization of the likelihood function A(8) is
equivalent to minimization of the cost function
1 N
J(O)=— - Oy, - 1.0
@) 2;[)& Je @]y, = £,(0)] (2-17)
1 2
=—|y—f(@
Sly=r@)
where by re-indexing y and f according to M scalar
components, we have
B4 £1(0)
y=| o |, f(O)= (2-18)
Yu Ju ()

The linear approximation used in the ML estimation
problem uses approximation for the the mapping

G:R" > RY,

fO)=fO)+FO)(O-0)+ %(9 ~0YF(0)(0-0) (2-19)

+ higher order terms,

where
FO=LO | F@yenr, 220
00 |,
o s 01,0
Oy =TT
iy () 3000, | (2-21)
F@)eR"™ m=1,.,M,i j=1,.,n
Using the linear approximation in (2-19), we get
1©O)= f(O)+F©6)&-0). (2-22)

According to the linear approximation, f(¢) lies in the

plane tangent to the measurement surface at the point 6.
Therefore, the linearization is equivalent to approximating
the measurement surface by the tangent plane at 0 [3,4].
The tangent plane is a good approximation to the
measurement surface if the magnitude of the quadratic

term, (9 —0)'E(0)(0 - é)H is negligible compared with

the magnitude of the linear term H F(é)(a — é)H Each term

in (3-15) is an M x1vector. It is useful to decompose the
quadratic term on the right hand side of (2-19) into



components in the tangent plane and orthogonal to the
tangent plane.
3 Velocity and Acceleration Vectors

Define the (M x1) velocity vectors or tangent vectors [3,
4]

6= L
i lo-d , (3-1)
_| 29 PO |10
a0, |, o0, || T
Then

FO=1/©0) .. [0 (3-2)
The velocity vectors span an n-dimensional space, the
tangent plane. We define the (M x1) acceleration vectors

[3. 4]

o’ f(0)
06,00,

(3-3)

, Lj=1..,n

f;j (é) =

0=6

The acceleration vectors have the following properties:

[0 =1,0), ij=12...n (3-4)

| 9,0

(3-3)
20, | a0, |

1y(6)=

, L,j=12,.,n
0=0 0=0

Because of the property (3-4), there are p, distinct
n, =nx(n+1)/2. We want

to decompose the acceleration vectors into components in
the tangent plane and orthogonal to the tangent plane.

Let £ (6) e R™" denote the the m™ face [3, 4] of the

acceleration vectors, where

accelaration array F (é) , where £ (é) is defined by

for @) o fonn(0)
F@:= .. . .

() S ©)

The projection matrix P, which projects an n-vector into

,m=12,.,M. 3-0)

the tangent plane is defined by [4]

P, = F(O)(F'(O)F ()" F'(). (3-7)

Therefore, we can decompose an acceleration vector into
components tangent and orthogonal to the tangent plane.

Sy A v A .
Let 1 (@) and 1@ denote the tangential and
orthogonal components of the acceleration vector fU ),

respectively. Then

fT@)=P.f,(0), i,j=12,..n, (3-8)

Y@ =uU-P)f,©0), i,j=12,..n. (3-9)

1,0 =11 )+ 1) ),

with £ L fY,

4

(3-10)
i,j=12,..,n.

Use of (3-10) for the quadratic term in in (2-19) gives

‘5,1:,(0”)5“2 :‘éwFT(é)é‘Hz +‘§'FN (é)éHi (3-11)

where

5=(0-0). (3-12)

4 Curvature Measures of Nonlinearity

Bates and Watts define parameter-effects curvature K
and intrinsic curvature K\’ [3-6] as two measures of

nonlinearity which compares the quadratic term with the
linear term in the direction of the vector ¢ in the

parameter space. These two curvatures at § along & are
defined by [3-6]

T m 41
jrn

T I
o)

Let u € R” be a unit vector along & and b be the norm
of 6. Then

5 =|6u = bu. (4-3)
Use of (4-3) in (4-1) and (4-2) gives
T L(G)L’H (4-4)
o
i u'FN(é)uH 5)
o

The curvature K along the direction  at 0 depends on
the type of parametrization used. Therefore, it is known as
the parameter-effects curvature. On the other hand, the
curvature K" in direction u at @ is an intrinsic property
of the measurement surface and does not depend on the
type of parametrization used.

Bates and Watts [3, 4] defined scale-free curvatures by
multiplying the curvatures K and K" by the standard

radius p [3, 4] to obtain

yl=pKT, (4-6)
yN=pKY, 4-7)
pi=sn :Hy— f(é)H /M”_ - (4-8)



5 Curvatures using Velocity and Acceleration
in an Arbitrary Direction

To calculate the relative curvatures, we need to calculate
the acceleration vetors in an arbitrary direction [3, 4]. Let
u € R" be an arbitrary unit vector in the parameters space.
To calculate the velocity and acceleration vectors near 6
in an arbitrary direction u, we treat @ as a function of a
distance parameter b and define

O(b,u) =0 + bu. (5-1)

Equation (5-1) represents a straight line in the parameters
space passing through 0. Mapping of the line in the
parameters space to the measurement space using (5-1) in
£(8), generates the parametric curve

£,0):=fOb.w) = fO+bu)  (52)
passing through the point f (é) . Define
(py= 20, (5-3)
ob
Then
7.(b)= zaf(e) 00, (b u) Zf(é’)u (5-4)
We can write (5-4) compactly by
1.®)=FO)u. (5-5)
Similarly, define
AL iy
AGE TR (5-6)
Differentiating ﬁ  (b) with respect to b, we get
f.0)= 53 76,
00,
_g; Le%@b (5-7)

—ZZPM)

i=l j=1

= Z Z fu (Ouu;,

i=1 j=1

+ﬁ®2ﬂw

since ou, /0b = 0. We can compactly write (5-7) by

f,(b)=u'F(O)u. (5-8)
Setting b equal to zero in (5-5) and (5-8) we get,
respectively,
1,(0)=F@u, (5-9)
£,(0)=u'F@)u. (5-10)

By orthogonal decomposition of fl (0), we have

£.0)= 170+ £, (0). (5-11)
Then the curvatures at @ in the direction u are
u WET (9)”H 17 (O)H (5-12)
e Jrof”
il (9)”H v (O)H (5-13)
Jran ﬁww

Consider the OR factorization [7, 8] of F(é) :

F(@)=0R =0, QMn]{ Ry }:QnR“,(S-M)

(M —n)xn

0

where Q is the first 7 columns of O, Q,, | is the next

(M —n) columns of Q, and R,
upper triangular matrix. Then use of (5-14) in (5-9) gives

isan nxn nonsingular

f.(O=F@)u=0,Ru=0,d, (515
where
d =R u. (5-16)
Consider the mapping
$=R,0. (5-17)
Then
0=Kg, (5-18)
where
K=R. (5-19)
Substituting the expression for € from (5-18) in £(0), we
get
1(0)=f(K¢)=g(9) (5-20)
Define
Og (¢) 5.21
g:(P)= o4 (5-21)
.. 07g(p) _08,(9) _%,(#) (5-22)
gij(¢)- 8¢i¢j 5¢j o4, .
Then
L6 =Y 6@, =G, (52
G(p)=[&(9) g.,(P)], (5-24)
£,(0)=G()d = F(O)u. (5-25)
Use of (5-16) in (5-25) gives
G((i)d = G.((;)Rnu = F(é)u, (5-26)

or G(d)=F(O)R;!.



Using the QR factorization of F(é) from (5-14) in (5-26)
gives

G(@)=F@O)R,'=0,R,R'=0, (527)
From (5-21) we get
: dg(#) _of )
8i (P)=—"="1—
og. 04, (5-28)
of(0) 99,
Z 00, 04, ,Z‘ ¢ '
From (5-18), we have
0,=3 k4. (5-29)
Thus -
a 9 ) n a¢ n
L=k, =Y k6, =k, (5-30)
6¢i =1 ’ a¢, ; ! !
Substitution of (5-30) in (5-28) gives
&) =2 1,0k, = FO)k,. (5-31)

Differentiation of g, (¢) in (5-31) with respect to é gives
6¢j 6¢j =
- f, (9)

p=1 6¢‘ p=1 g=1

= Zﬂ:ifﬁq (e)kpikq/ = szi}qu (g)kq,--

p=l g=1 p=l g=1

g(/ (@)=

v of,(6) 20,
a0, a¢

(5-32)

We can write (5-32) in a compact form by
G(¢)=KF(O)K, (5-33)

G,($)=KF,K, m=12,..M (5-34)

Using the derivative arrays G(g), G (¢), andG" (§) we
can express the curvatures by

j’ _ d,GT(&)fH (5-35)
6@

v W (0) _ d'G" (§d| (5-36)

| ot

The denominator in (5-35) and (5-36) is simplified by
. A 2 <A oA
|| = (Ghaycga
=(0,d)'0,d =d'0,0,d
=d'l,d=dd=|d|.

(5-37)

Let u, e R" be a unit vector along d. Then

=l s =1. (5-38)
Substitution of (5-38) in (5-35) and (5-36) gives
d'G™($)d o
Vo= P P u;GT(¢)udH, (5-39)
d'G" ($)d o
Ve = P P u;,GN(¢)udH, (5-40)

Suppose we apply the transformation Q' to an M-vector
xeRY. Then

HQ'xH2 =x'00x=x"I,,x=x'x= Htz (5-41)
Applying the transformation Q' to fu (0), we get
o= o 5-42
0 f,0)= | (5-42)
&
where
1¥T g 5-43
0,1, (0)= ; (5-43)
O(an)xl
oio- | (544
S
Then
4
- { ) -kl
noa (5-45)
= zangij Zzagdzdj
i=l j=1 i=l j=1
5 1/2
“foird]- L |
where
a,:=0'8,(9). (5-46)
We define the following transformed acceleraion array
A=[0G@1=10%,1=1d,]. (5-47)
Thus using the transformed acceleration array, the
curvatures are given by
" 5 1/2
Al | e
m=1
2 1/2
M .
7/;/ = p|: z u;Amud‘ :l . (5_49)

=n+1



6  Constant Velocity Motion with Range
Azimuth Measurements

We consider the ML estimation problem for a target with
a constant velocity motion (CVM) in the XY-plane with
2D range and azimuth measurements. An unattended
ground sensor (UGS) with an acoustic and seismic sensor
package or a radar sensor collects such measurements.
Let (p, (1), p, (1)) and (s, (¢),s,(¢))be the target and

sensor positions at time #, respectively. Let (r.(0),r, (1)

denote the components of the 2D range vector. Then

n0]_[p.0-5,0] D
r@] | p,O=s,0)
Omitting the measurement subscript k& in (2-2), the
measurement models for range and azimuth are
h(x,5)=r=[(p,~s.)" +(p,~5,)1"",  (62)
h,(x,8) =«
(6-3)

tan'l(px =S.,p,—s,), if tan’l(};,ry) >0,
tan™(p, =s,.p, —s,) + 27, if tan” (r,,r) <.

The derivative of the measurement function /# with respect
to the target state x is

i 00
H(x,s):= Oh(x.5) ={ " “y

(6-4)
0Ox r/rt —r/r? 0 0f

where u is a unit vector along the range vector defined by

ux 1 px - SA'
u= =— .
u, | rlp,-s,
In order to evaluate F(6), we need Oh(x,,s, /@ which

is calculated by

Oh(x.s,) _ Oh(x.s,) % _ Oh(x;.s,) ®
26 o, 00 a,

(6-5)

(6-6)

For the current problem, the m™ face of the accelaration
array F (é) involves two types of terms corresponding to

range and azimuth measurement functions. Thus, we need
evaluation of two types of nxn Hessian matrices,

0%r/00* and 8%/ 90*. It can be shown that

o°r, , OH

L=, —L0,, (6-8)
06 ox,
o’a , OH,

2k =0, — D, (6-9)
00 ox,

where

2 au
OH, U (6-10)
. op, >
k 02><2 02><2
a—”:l[lz —uu'l, (6-11)
o r
o, _ { ¥y 02x2:| (6-12)
ox, 0,, 05,
(6-13)

1| —2uu, 2ul-1
Y= - 5 y . .
Pl 2u; -1 2uu,
7 Numerical Simulation and Results

We assume that the sensor is located at the origin of the
XY coordinate frame. The speed of the target is 10 km/hr
and the velocity makes an angle of 45 degrees with the X-
axis, as shown in Fig. 1. We vary the distance of closest
approach (D) of the target from the sensor to analyze the
curvature measures of nonlinearity. We consider three
values, 1 km, 4 km, and 10 km for the distance of closest
approach. We simulate the 2D range and azimuth
measurements using a measurement error standard
deviation of 20 meters for range and measurement error
standard deviations of 3 degrees and 10 degrees for
azimuth. For each scenario, we simulate 50 range and
azimuth measurements. Figure 1 presents the truth
trajectory of the target, senor location, and measurement
locations with 0.99 probability error ellipses.

Truth Trajectory and Report Location

20001 | —=— Truth
« Report location
1800 |-
1600 |-
1400 -
1200 - .
£ Velocity
5 10001 10 km/hr
800 -
600 |-
400 - D: Distance of closest approach
200 - Tkm
0r SSensor-1
-1500 -1000 -500 0 500 1000
X (m)

Fig. 1. Target truth trajectory, sensor location, and
measurement locations with 0.99 probability error
ellipses. The standard deviations for range and
azimuth are 20 meters and 3 degrees, respectively.

In order to obtain an initial estimate of the parameter &,
we first perform forward filtering using the extended
Kalman filter (EKF) and then perform backward
smoothing using the Rauch-Tung-Stribel smoother [2].
We use the Levenberg-Marquardt algorithm [9] in



Curvature

minimizing the cost function in (2-17) for the ML
estimated

estimation problem. The true and ML
trajectories for the scenario in Fig. 1 are shown in Fig. 2.

Truth and ML Estimated Trajectory

—— True
—e— ML Estimated

2000 -

1800 -

1600 -

1400 -

1200 -

1000 -

800 -

600 -

400 -

200 -

500

-1000

-1500
X(m)

Fig. 2. Target truth trajectory and maximum likelihood
estimated trajectory. The distance of closest approach is

1 km. The standard deviations for range and azimuth are

20 meters and 3 degrees, respectively.

We performed 200 Monte Carlo (MC) simulations with
different realizations for the measurement error sequence
and calculated the parameter-effects curvature and
intrinsic curvature. We selected the parameter

5:=(0-6) where @ and 0 are the true and ML

estimated parameters, respectively. We have shown
parameter-effects curvatures from 200 MC runs in Fig. 3
and Fig. 4 for scenarios where the distances of closest
approach (D) are 1 km and 10 km, respectively. The
standard deviations for range and azimuth are 20 meters

Parameter-effects Curvature
0.4

0.35F
0.3F
0.25F
0.2r
0.15
0.1}

0.05}
.1

?ﬁ‘ 1| “I
0

A

.
fmfn\’ L u”w ' u&‘g‘r}m‘{“ \'\W

60 80 100 120 140
Monte-Carlo Run Index

m"‘\“x 14
o 20

m‘k
40

160 180

Fig. 3. Parameter-effects curvatures for 200 Monte Carlo
runs for the scenario with the distance of closet approach

of 1 km. The standard deviations for range and
azimuth are 20 meters and 3 degrees, respectively.

Curvature

Curvature

and 3 degrees, respectively. Figures 5 and 6 show the

corresponding intrinsic curvatures from 200 MC runs for
scenarios where the distances of closest approach (D) are
1 km and 10 km, respectively. We observe in Figures 3-6

Parameter-effects Curvature

035} [ [
I

03}

il

02| ||

mﬂ

01l

~—

—

|
O.OSJ'

-
-—

.'
—
I —
=

L
80 100 120
Monte-Carlo Run Index

Fig. 4. Parameter-effects curvatures for 200 Monte Carlo
runs for the scenario with the distance of closet approach
of 10 km. The standard deviations for range and
azimuth are 20 meters and 3 degrees, respectively.

that the the parameter-effects curvature and intrinsic
curvature vary significantly with MC runs for given
scenario. Morever, for each scenario, the intrinsic
curvature is much smaller compared with the parameter-
effects curvature. Figures 3-6, show that both curvature
measures increase with increase in the distance of closest
approach.

Intrinsic Curvature

0.045

0.035F

0.025 -

0.015+

0.005 -

0 L I

L L
80 100 120 140
Monte-Carlo Run Index

0 20 40 60 160 180

Fig. 5. Intrinsic curvature for 200 Monte Carlo runs for
the scenario with the distance of closet approach of 1 km.
The standard deviations for range and azimuth are 20
meters and 3 degrees, respectively.

200
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0.05. Intrinsic Curvature 8 COHCIUSiOIlS
0.045|- In this paper, we have developed an algorithm to quantify
the degree of nonlinearity of a nonlinear filtering problem
using the parameter-effects curvature and intrinsic
0.035 curvature derived from differential geometry. We have
presented preliminary results for the constant velocity
motion of a target in the XY-plane with two-dimensional
0.025} range and azimuth measurements. Our results show that
the parameter-effects curvature increases with increase in
the distance of closest approach of the target from the
0.015 11 sensor. For each scenario, the intrinsic curvature is much
smaller than the parameter-effects curvature. In our future

0.04 -

0.03

0.02

0.01} .
work, we plan to analyze the performances of the particle
0.005 filter (PF) [10-12] and EKF with varying degrees of
I nonlinearity.

I 1 1]
0 20 40 60 80 100 120 140 160 180 200

Monte-Carlo Run Index
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