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Abstract - Most ground target tracking problems involve 
nonlinear filtering due to nonlinearity in the measurement 
model. At present, a quantitative measure of nonlinearity and its 
relationship with the performance of the filtering algorithms are 
lacking. We quantify the degree of nonlinearity of a filtering 
problem using the differential geometry based measures of 
nonlinearity such as the parameter-effects curvature and 
intrinsic curvature. The algorithm for calculating these two 
measures of nonlinearity was first presented for a static least 
squares estimation problem. In this paper, we extend the 
approach to calculate these two measures of nonlinearity for a 
problem involving a linear system dynamic model and nonlinear 
measurement model using the maximum likelihood estimator. We 
present numerical results using simulated data for the constant 
velocity motion of a target with range and azimuth 
measurements. 

Keywords: Ground target tracking, nonlinear filtering, 
differential geometry measures of nonlinearity, parameter-effects 
curvature, intrinsic curvature. 
 
1 Introduction  
Sensors employed in ground target tracking systems 
include the ground moving target indication (GMTI) 
radar, synthetic aperture radar (SAR), unattended ground 
sensor (UGS), electro-optical (EO) sensor, and infrared 
(IR) sensor.  The measurements for these sensors are 
nonlinear functions of the target state. Even if the target 
dynamic model is linear, the filtering problem is nonlinear 
due to nonlinearity in the measurement model. If the 
dynamic and measurement models are linear with additive 
Gaussian noises, then the Kalman filter (KF) [1, 2] is an 
optimal estimator in the minimum mean square error 
(MMSE) sense and provides closed form solutions. 
Closed-form expressions for the conditional mean and 
covariance in the KF completely characterize the posterior 
Gaussian distribution for the target state.  In general, no 
optimal or closed form solution exists for the nonlinear 
filtering problem. The extended Kalman filter (EKF) [1, 
2] is commonly used as an approximate filter when the 
target dynamic model or/and sensor measurement model 
is/are nonlinear. The EKF retains only the first order term 
in the Taylor series expansion of the nonlinear dynamic 
or/and measurement models. This linearization can often 
introduce large errors in the estimated state and filter 
calculated covariance when the degree of nonlinearity 
(DoN) and measurement errors are high.  
   Although the DoN is widely referred to in filtering 
problems, a systematic and quantitative characterization is 
lacking at present. In this paper, we characterize the DoN 

using curvature measures of nonlinearity (CMoN) from 
differential geometry. We use two relative curvature 
measures of nonlinearity [3-6], the parameter-effects 
curvature and intrinsic curvature to characterize the 
degree of nonlinearity of a filtering problem. The 
linearization used in the EKF represents a tangent plane 
approximation to the measurement function or the system 
dynamic function at the predicted state. The CMoN 
indicate whether the tangent plane approximation used in 
the EKF is a good approximation or not for a given 
problem. In this paper we analyze the DoN for the 
filtering problem where the dynamic model is linear and 
the measurement model is nonlinear. This is a common 
approach in most ground target tracking problems.  
     In this paper, we use the symbol  “:=” to define a 
quantity and nI  to represent an nn×  idenity matrix. The 
outline of the paper is as follows. Section 2 describes the 
statement of the problem. Section 3 derives expressions 
for the velocity and acceleration arrays [3, 4] needed to 
compute the two CMoN and Section 4 defines the two 
curvature measures of nonlinearity. Section 5 derives the 
curvature measures of nonlinearity using velocity and 
acceleration in an arbitrary direction [3, 4]. In Section 6, 
we present the dynamic model and nonlinear measurement 
model for the 2D range and azimuth measurements for 
calculating the parameter-effects curvature and intrinsic 
curvature.  Finally, Sections 7 and 8 present numerical 
results and conclusions.  
 
2 Statement of Problem 
 

Let n
kx ℜ∈  and km

kz ℜ∈ denote target state and 
measurement at time kt , respectively. The linear dynamic 
model and nonlinear measurement model commonly used 
in ground target tracking problems are described, 
respectively, by  
                       ,1,11, −−− +Φ= kkkkkk wxx                    (2-1) 

                               ,)( kkkk nxhz +=                         (2-2) 

where ),(: 11, −− Φ=Φ kkkk tt  is the state transition matrix and 

),(: 11, −− = kkkk ttww  is the zero-mean white Gaussian 

integrated process noise.  In (2-2), mn
kh ℜ→ℜ: and 

),0(~ kk RNn  represent the nonlinear measurement 
function and zero-mean white Gaussian measurement 
noise, respectively.  Taylor series expansion of the 



measurement function about the predicted state at time k, 
1|ˆ −kkx  gives  
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The EKF [1, 2] uses the linear approximation 
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The linear approximation used in the EKF is a valid 
approximation if and only if the measurement function is 
relatively flat near 1|ˆ −kkx  and hence the tangent plane 
approximation [3, 4] in (2-5) is a valid approximation. 
This requires the quantification of the degree of 
nonlinearity of the measurement function. 
 In order to analyze the degree of nonlinearity of a 
filtering problem it is sufficient to consider the dynamic 
model without the process noise 
 
                    ,11, −−Φ= kkkk xx                                  (2-6) 

and the nonlinear measurement model described by (2-2). 
We estimate the initial state of the system 1x=θ  at time 

1t  processing a collection of N measurements 
                     )....,,(: 21 Nzzzz =                          (2-7) 

The measurement error covariance matrix is diagonal in  
most practical tracking problems where 
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We generate dimensionless measurements }{ ky by the 
mapping 
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The resulting problem becomes a maximum likelihood 
(ML) estimation problem 
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where )(θΛ  is the likelihood of the parameterθ . Because 
of the structure of measurement model described by (2-2), 
we get 
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Using (2-6), we have            

                    .1,11, θkkk xx Φ=Φ=                           (2-13) 

Use of (2-13) in (2-10) gives 

             ,,...,1,)( Nkvfy kkk =+= θ                    (2-14) 

where 

                    ).(:)( 1, θηθ kkkf Φ=                                 (2-15) 

The measurement model in (2-14) gives 
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Maximization of the likelihood function )(θΛ  is 
equivalent to minimization of the cost function 
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where by re-indexing y and f according to M scalar 
components, we have 
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The linear approximation used in the ML estimation 
problem uses approximation for the the mapping 

,: MnG ℜ→ℜ  
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Using the linear approximation in (2-19), we get 

                          ).ˆ)(ˆ()ˆ()( θθθθθ −+≈ Fff &             (2-22) 

According to the linear approximation, )(θf  lies in the 
plane tangent to the measurement surface at the point .̂θ  
Therefore, the linearization is equivalent to approximating 
the measurement surface by the tangent plane at θ̂  [3, 4]. 
The tangent plane is a good approximation to the 
measurement surface if the magnitude of the quadratic 
term, )ˆ)(ˆ()ˆ( θθθθθ −′− F&&  is negligible compared with 

the magnitude of the linear term .)ˆ)(ˆ( θθθ −F& Each term 

in (3-15) is an 1×M vector. It is useful to decompose the 
quadratic term on the right hand side of (2-19) into 



components in the tangent plane and orthogonal to the 
tangent plane. 

3   Velocity and Acceleration Vectors 
Define the )1( ×M velocity vectors or tangent vectors  [3, 
4]  

    

.,...,2,1)(...)(

)(:)ˆ(

ˆˆ

1

ˆ

niff

ff

i

M

i

i
i

=
′













∂
∂

∂
∂

=

∂
∂

=

==

=

θθθθ

θθ

θ
θ

θ
θ

θ
θθ&

      (3-1)            

Then 
                    .)]ˆ(...)ˆ([)ˆ( 1 θθθ nffF &&& =                    (3-2) 
The velocity vectors span an n-dimensional space, the 
tangent plane. We define the )1( ×M acceleration vectors 
[3, 4]  
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  The acceleration vectors have the following properties:  
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Because of the property (3-4), there are an  distinct 
acceleration vectors, where   2/)1( +×= nnna .  We want 
to decompose the acceleration vectors into components in 
the tangent plane and orthogonal to the tangent plane.  
    Let nn

mF ×ℜ∈)ˆ(θ&&   denote the the thm  face [3, 4] of the 

accelaration array )ˆ(θF&& , where  )ˆ(θmF&&  is defined by                             
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The projection matrix TP  which projects an n-vector into 
the tangent plane is defined by [4] 

             ).ˆ())ˆ()ˆ()(ˆ(: 1 θθθθ FFFFPT ′′= − &&&&                (3-7)       

Therefore, we can decompose an acceleration vector into 
components tangent and orthogonal to the tangent plane. 
Let )ˆ(θT

ijf&& and )ˆ(θN
ijf&& denote the tangential and 

orthogonal components of the acceleration vector ),ˆ(θijf&&  
respectively.  Then 
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Use of (3-10) for the quadratic term in in (2-19) gives 
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where  

                             ).ˆ(: θθδ −=                                   (3-12) 

4    Curvature Measures of Nonlinearity 
Bates and Watts define parameter-effects curvature TKδ  
and intrinsic curvature NKδ  [3-6] as two measures of 
nonlinearity which compares the quadratic term with the 
linear term in the direction of  the vector δ  in the 
parameter space. These two curvatures at θ̂  along δ  are 
defined by [3-6] 
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Let nu ℜ∈  be a unit vector along δ  and b  be the norm 
of δ . Then 

                                 .: buu == δδ                           (4-3) 

Use of (4-3) in (4-1) and (4-2) gives 
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The curvature T
uK  along the direction u  at θ̂  depends on 

the type of parametrization used. Therefore, it is known as 
the parameter-effects curvature. On the other hand, the 
curvature N

uK  in direction u  at θ̂  is an intrinsic property 
of the measurement surface and does not depend on the 
type of parametrization used. 
    Bates and Watts [3, 4] defined scale-free curvatures by 
multiplying the curvatures T

uK  and N
uK  by the standard 

radius ρ  [3, 4] to obtain 
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5 Curvatures using Velocity and Acceleration 
in an Arbitrary Direction 

To calculate the relative curvatures, we need to calculate 
the acceleration vetors in an arbitrary direction [3, 4]. Let 

nu ℜ∈  be an arbitrary unit vector in the parameters space. 
To calculate the velocity and acceleration vectors near θ̂  
in an arbitrary direction u, we treat θ  as a function of a 
distance parameter b and define 

                               .ˆ:),( buub +=θθ                          (5-1)                  

Equation (5-1) represents a straight line in the parameters 
space passing through θ̂ . Mapping of the line in the 
parameters space to the measurement space using (5-1) in 

)(θf , generates the parametric curve 
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passing through the point )ˆ(θf . Define 
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We can write (5-4) compactly by 

                                  .)()( uFbfu θ&& =                         (5-5)                                    

Similarly, define 
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Differentiating  )(bfu
&  with respect to b, we get 
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since  .0/ =∂∂ bui  We can compactly write (5-7) by 

                           .)()( uFubfu θ&&&& ′=                             (5-8) 

Setting b equal to zero in (5-5) and (5-8)  we get, 
respectively, 
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By orthogonal decomposition of )0(uf&& , we have 
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Then the curvatures at θ̂  in the direction u  are 
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Consider the QR factorization [7, 8] of )ˆ(θF& : 
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where nQ is the first n columns of Q, nMQ − is the next 
)( nM −  columns of Q, and 11R  is an nn×  nonsingular 

upper triangular matrix. Then use of (5-14) in (5-9) gives 

              ,)ˆ()0( 11 dQuRQuFf nnu === θ&&           (5-15)                  

where 
                            .: 11uRd =                                (5-16)  

Consider the mapping 
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Substituting the expression for θ  from (5-18) in )(θf , we 
get 
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Use of (5-16) in (5-25) gives     
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Using the QR factorization of )ˆ(θF&  from (5-14) in (5-26) 
gives 
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From (5-18), we have 
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Substitution of (5-30) in (5-28) gives 
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We can write (5-32) in a compact form by             
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Using the derivative arrays ),ˆ(φG& ),ˆ(φTG&&  and )ˆ(φNG&& we 
can express the curvatures by         
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The denominator in (5-35) and (5-36) is simplified by 
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Let n
du ℜ∈  be a unit vector along d. Then 
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Substitution of (5-38) in (5-35) and (5-36) gives 
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Suppose we apply the transformation Q′  to an M-vector 
.Mx ℜ∈  Then 
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Applying the transformation Q′ to )0(uf&& , we get 
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where 

                      ).ˆ(:: φijij gQa &&′=                                    (5-46) 

We define the following transformed acceleraion array 

             ].[][)]ˆ(][[: ijij agQGQA &&&&&&&& =′=′= φ                    (5-47)   

Thus using the transformed acceleration array, the 
curvatures are given by 
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6       Constant Velocity Motion with Range 
         Azimuth Measurements  
 
We consider the ML estimation problem for a target with 
a constant velocity motion (CVM) in the XY-plane with  
2D range and azimuth measurements. An unattended 
ground sensor (UGS) with an acoustic and seismic sensor 
package or a radar sensor collects such measurements.  
Let ))(),(( tptp yx  and ))(),(( tsts yx be the target and 
sensor positions at time t, respectively. Let ))(),(( trtr yx  
denote the components of the 2D range vector. Then 
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Omitting the measurement subscript k  in (2-2), the 
measurement models for range and azimuth are 
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The derivative of the measurement function h with respect 
to the target state x is 
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where u is a unit vector along the range vector defined by 
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In order to evaluate )(θF& , we need θ∂∂ )/( kk ,sxh  which 
is calculated by 
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For the current problem, the thm  face of the accelaration 
array )ˆ(θmF&&  involves two types of terms corresponding to 
range and azimuth  measurement functions. Thus, we need 
evaluation of two types of nn×  Hessian matrices, 

22 / θ∂∂ r  and 22 / θα ∂∂ .  It can be shown that 
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7   Numerical Simulation and Results 
We assume that the sensor is located at the origin of the 
XY coordinate frame. The speed of the target is 10 km/hr 
and the velocity makes an angle of 45 degrees with the X-
axis, as shown in Fig. 1. We vary the distance of closest 
approach (D) of the target from the sensor to analyze the 
curvature measures of nonlinearity. We consider three 
values, 1 km, 4 km, and 10 km for the distance of closest 
approach. We simulate the 2D range and azimuth 
measurements using a measurement error standard 
deviation of 20 meters for range and  measurement error 
standard deviations of 3 degrees and 10 degrees for 
azimuth. For each scenario, we simulate 50 range and 
azimuth measurements. Figure 1 presents the truth 
trajectory of the target, senor location, and measurement 
locations with 0.99 probability error ellipses.  

 

 

meters for range     to simulate the target truth trajectory 
for both the 2D position and velocity and 2D GMTI 
measurements. The truth trajectory generation used three 
different values, 0.5, 1.0, and 2.0 m2/s3, for both 
components of the power spectral density ),( 21 qq  of the 
process noise. The KF and PF use the same values of the 
power spectral density as used in the simulation. The PF 
used 500 particles and we used 200 Monte Carlo 
simulations to calculate various statistics of the KF and PF 
based OOSM algorithms.  

Use a 12 point space above the figure. All figures and 
figure captions should be centered, with a 6 point space 
above and 12 point space below figure captions. All 
figures must be numbered consecutively (i.e., not section- 

 
Fig. 1. Target truth trajectory, sensor location, and 
measurement locations with 0.99 probability error 

ellipses. The standard deviations for range and  
azimuth are 20 meters and 3 degrees, respectively. 

 
In order to obtain an initial estimate of the parameter θ , 
we first perform forward filtering using the extended 
Kalman filter (EKF) and then perform backward 
smoothing using the Rauch-Tung-Stribel smoother [2]. 
We use the Levenberg-Marquardt algorithm [9] in 

 

-1500 -1000 -500 0 500 1000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Truth Trajectory and Report Location

Sensor-1

X (m)

Y
 (m

)

Truth          
Report location

D: Distance of closest approach
1 k m

Velocity
10 km/hr

45 degrees

-1500 -1000 -500 0 500 1000

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Truth Trajectory and Report Location

Sensor-1

X (m)

Y
 (m

)

Truth          
Report location

D: Distance of closest approach
1 k m

Velocity
10 km/hr

45 degrees



-1500 -1000 -500 0 500

200

400

600

800

1000

1200

1400

1600

1800

2000

Truth and ML Estimated Trajectory

X (m)

Y
 (m

)

True        
ML Estimated

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Parameter-effects Curvature

Monte-Carlo Run Index

C
ur

va
tu

re

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
Intrinsic Curvature

Monte-Carlo Run Index

C
ur

va
tu

re

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Parameter-effects Curvature

Monte-Carlo Run Index

C
ur

va
tu

re

 

minimizing the cost function in (2-17) for the ML 
estimation problem. The true and ML estimated 
trajectories for the scenario in Fig. 1 are shown in Fig.  2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Target truth trajectory and maximum likelihood 
estimated trajectory. The distance of closest approach is 
 1 km. The standard deviations for range and azimuth are 

20 meters and 3 degrees, respectively. 
 
We performed 200 Monte Carlo (MC) simulations with 
different realizations for the measurement error sequence 
and calculated the parameter-effects curvature and 
intrinsic curvature.  We selected the parameter 

)ˆ(: θθδ −=  where θ  and  θ̂  are the true and ML 
estimated parameters, respectively. We have shown 
parameter-effects curvatures from 200 MC runs  in Fig. 3 
and Fig. 4 for scenarios where the distances of closest 
approach (D) are 1 km and 10 km, respectively. The 
standard deviations for range and azimuth are 20 meters 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Parameter-effects curvatures for 200 Monte Carlo 
runs for the scenario with the distance of closet approach 

of 1 km. The standard deviations for range and  
azimuth are 20 meters and 3 degrees, respectively. 

and 3 degrees, respectively. Figures 5 and 6 show the 
corresponding intrinsic curvatures from 200 MC runs for 
scenarios where the distances of closest approach (D) are 
1 km and 10 km, respectively. We observe in Figures 3-6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 4. Parameter-effects curvatures for 200 Monte Carlo 
runs for the scenario with the distance of closet approach 

of 10 km. The standard deviations for range and  
azimuth are 20 meters and 3 degrees, respectively. 

 
that the the parameter-effects curvature and intrinsic 
curvature vary significantly with MC runs for  given 
scenario. Morever, for each scenario, the intrinsic 
curvature is much smaller compared with the parameter-
effects curvature.  Figures 3-6, show that both curvature 
measures increase with increase in the distance of closest 
approach.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 5. Intrinsic curvature for 200 Monte Carlo runs for 
the scenario with the distance of closet approach of 1 km. 

The standard deviations for range and azimuth are 20 
meters and 3 degrees, respectively. 
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Fig. 6. Intrinsic curvature for 200 Monte Carlo runs for 
the scenario with the distance of closet approach of 10 km. 

The standard deviations for range and azimuth are 20 
meters and 3 degrees, respectively. 

 
We present the minimum, maximum, median and mean 
values for the parameter-effects curvature and intrinsic 
curvature for various values of the distance of closest 
approach and azimuth measurement error standard 
deviations in Tables 1 and 2.  
 
Table 1. Parameter-effects curvatures with varying values 

for the distance of closest approach (D) and azimuth 
standard deviations. 

Parameter-effects Curvature Azimuth 
Standard 
Deviation 

(deg) 

 

D 

(km) 

 

min 

 

max 

 

median 

 

mean 

1 0.0006 0.0587 0.0176 0.0192 
4 0.0004 0.1697 0.0452 0.0524 

 
3 

10 0.0013 0.3991 0.1062 0.1266 
1 0.0013 0.5667 0.0967 0.1457 
4 0.0007 1.5763 0.2628 0.3782 

 
10 

10 0.0017 3.3905 0.4017 0.5639 
 

Table 2. Intrinsic curvature with varying values for the 
distance of closest approach (D) and azimuth standard 

deviations. 
Intrinsic Curvature Azimuth 

Standard 
Deviation 

(deg) 

 

D 

(km) 

 

min 

 

max 

 

median 

 

mean 

1 0.0001 0.0065 0.0018 0.0020 
4 0.0000 0.0169 0.0020 0.0034 

 

3 
10 0.0000 0.0478 0.0046 0.0081 
1 0.0001 0.0065 0.0018 0.0020 
4 0.0000 0.0077 0.0010 0.0015 

 

10 
10 0.0000 0.0242 0.0029 0.0041 

 
 

8      Conclusions 
In this paper, we have developed an algorithm to quantify 
the degree of nonlinearity of a nonlinear filtering problem 
using the parameter-effects curvature and intrinsic 
curvature derived from differential geometry. We have 
presented preliminary results for the constant velocity 
motion of a target in the XY-plane with two-dimensional 
range and azimuth measurements. Our results show that 
the parameter-effects curvature increases with increase in 
the distance of closest approach of the target from the 
sensor. For each scenario, the intrinsic curvature is much 
smaller than the parameter-effects curvature. In our future 
work, we plan to analyze the performances of the particle 
filter (PF) [10-12] and EKF with varying degrees of 
nonlinearity.  
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