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Abstract - We present a method to give single band 
intensified nightvision imagery a natural day-time color 
appearance. For input, the method requires a true color RGB 
source image and a grayscale nightvision target image. The 
source and target image are both transformed into a 
perceptually decorrelated color space. In this color space a 
best matching source pixel is determined for each pixel of the 
target image. The matching criterion uses the first order 
statistics of the luminance distribution in a small window 
around the source and target pixels. Once a best matching 
source pixel is found, its chromaticity values are assigned 
(transferred) to the target pixel while the original luminance 
value of the target pixel is retained. The only requirement of 
the method is that the compositions of the source and target 
scenes resemble each other. 

Keywords: Color transfer, false color, nightvision, intensified 
imagery. 
 
 
1 Introduction 

Most common night-time imaging systems use single-
band sensors that are sensitive to either emitted infrared 
(IR) radiation or reflected light, and thus provide a 
grayscale representation of the inspected scene. A false 
color representation of night-time imagery that closely 
resembles a natural daylight color image will help the 
observer by making scene interpretation more intuitive. 

False color representation of grayscale images may 
result in a better scene segmentation and understanding, 
since the human eye can discern several thousands of 
colors, whereas it can only distinguish about 100 shades 
of grey at any instance. False color rendering of night-
time imagery that agrees with natural daytime colors 
(intuitively correct color mapping) significantly improves 
observer performance and reaction times in tasks that 
involve scene segmentation and classification [2, 10-13, 
15]. However, color mappings that do not result in 
natural object colors (counterintuitive color mapping) 
seriously degrade situational awareness [5, 11, 13]. One 
of the main reasons is the counter intuitive appearance of 
scenes rendered in some artificial color schemes and the 
lack of color constancy [13].  Hence, an ergonomic color 
scheme should produce night vision imagery with a 
natural appearance and with colors that are to some 
extent invariant for changes in the environmental 
conditions (i.e. the image should always have more or 
less the same appearance). 

Welsh et al. [14] recently introduced a method to 
transfer a source image’s color characteristics to a target 
grayscale image. The method employs a transformation 
to a principal component space that has recently been 
derived from a large ensemble of hyperspectral images of 
natural scenes [9]. This color space provides three 
decorrelated, principal channels corresponding to an 
achromatic luminance channel and two chromatic 
opponent channels. In this color space a best matching 
characteristic pixel in the color source image is 
determined for each pixel in the grayscale target image. 
The chromaticity values of the matching source pixel are 
then transferred to the target pixel while the original 
luminance value of the target pixel is retained. The only 
requirement of the method is that the composition of the 
source and target scenes is similar to some extent. Hence, 
the depicted scenes need not be identical; they merely 
have to resemble each other. For surveillance systems, 
that usually register a fixed scene, a daylight color image 
of the same scene that is being monitored is easily 
available and can be used to derive an optimal color 
mapping.  

Here we apply the method of Welsh et al. [14] to 
transfer the characteristics of natural daylight color 
images to single-band intensified nightvision imagery. 
The results show that the method can be used effectively 
to give single-band intensified nightvision imagery a 
realistic day-time color appearance.  
 
2 Method 
 The aim of the present study is to give grayscale 
nightvision images the appearance of normal daylight 
color images. In this section we show how a recently 
introduced technique to color grayscale photographs can 
be applied for this purpose [14]. 

The general problem of adding color to a grayscale 
image has no exact and objective solution, since one 
single grayscale value may correspond to a range of 
different colors. However, Welsh et al. [14] recently 
presented a technique to transfer color between a source, 
color image and a target, grayscale image. The method 
works as follows.  

First, both the color (source) and grayscale (target) 
RGB images are converted into the decorrelated l� �  
space [9] for subsequent analysis. This color space was 
developed to minimise the correlation between the three 



color coordinate axes. The color space provides three 
decorrelated, principal channels corresponding to an 
achromatic luminance channel (l) and two chromatic 
channels a and b , which roughly correspond to yellow-
blue and red-green opponent channels. Thus, changes 
made in one color channel should minimally affect values 
in the other channels. The reason the l� �  color space was 
selected for the current procedure is because it allows us 
to selectively transfer the chromatic a  and b  channels 
from the color image to the grayscale image without 
introducing cross-channel artefacts.  

Second, a subset of pixels in the color (source) image 
are selected as samples. The samples should be 
(randomly) distributed over the entire area of the source 
image, to guarantee the availability of a characteristic 
sample for each of the details (materials) represented in 
the scene. For each of the sample pixels we compute the 
mean and standard deviation of the luminance (l) value 
over a small neighborhood of the pixel. We found that a 
neighborhood size of 7x7 pixels works well for most 
images. This agrees with the results of Welsh et al. [14]. 

Third, for each pixel in the grayscale (target) image in 
scan-line order the best matching sample in the color 
(source) image is selected, based on the weighted average 
of luminance (50%) and standard deviation of luminance 
(50%). Once the best matching pixel is found, its a and b  
chromaticity values are transferred (assigned) to the 
target pixel while the original luminance value of the 
target pixel is retained. We tried various ratios of the 
weighting coefficients but found no significant 
differences in the final results. This agrees with the 
results of Welsh et al. [14]. 

The algorithm works best when the luminance 
distributions of the target and source images are locally 
similar. Its performance will degrade when the pixel 
histograms of the target and source luminance images are 
substantially different. For example, a light source image 
will be of little use when processing a dark target image. 
As a preconditioning step we therefore compute a linear 
remapping of the luminance distribution of the source 
image. This remapping is such that the first and second 
order statistics of the luminance distribution of the source 
image become equal to those of the target image. This 
helps to create a better correspondence between the 
luminance ranges of the target and source images, but 
does not alter the luminance values of the target image. 
More concretely, if l(p)  is the luminance of a pixel in the 
source image, then we remap it as follows: 
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where tm  and sm  represent the mean luminances, and 

ts  and ss  are the standard deviations of the luminance 

distributions, both taken with respect to the target and 
source luminance distributions respectively. This 

mapping yields better results than the standard approach 
of histogram matching [1], which yields non-smooth 
mapping with undesirable side effects [4].  

Since most of the visually distinctive variation between 
pixel values arises from luminance differences, we can 
limit the number of samples we use as source color  
pixels and still obtain a significant range of color 
variation in the image. This decreases the number of 
comparisons made for each pixel in the grayscale target 
image and thereby decreases computation time. We 
found that approximately 100 samples taken on a regular 
grid is sufficient. This agrees with Welsh et al.  [14] , 
who suggested to use about 200 samples on an irregular 
grid.   

 
3 Examples 

Figure 1 demonstrates the potential of the color transfer 
method. Here the method is applied to colorize the target 
grayscale photograph in Figure 1a using the color 
photograph of Figure 1b as the source image. Notice that 
the source image contains the same kind of materials as 
the target image (both images show grass, trees, and sky) 
but the actual type of the displayed objects is different in 
both cases (e.g. the trees are of a different kind). The 
resulting colorized image, shown in Figure 1c, has a 
natural appearance, with blue sky, dark green trees, and 
grass that is light greenish and yellowish. 

To test the color transfer method for nightvision 
imagery we registered a variety of nighttime outdoor 
scenes with a single band image intensifier. These scenes, 
which are shown in Figures 2-6a, display a wide range of 
different materials (grass, several types of trees, 
pavement, roads, buildings, sky, water). The image 
intensifier was a monocular Mini N/SEAS device 
(assembled by ITL, Israel), equipped with a 2nd 
generation XD4 tube (produced by DEP, The 
Netherlands). A Sony Cybershot DSC-P5 3.2 megapixels 
digital camera was mounted behind the image intensifier 
to record the nightvision image. The illumination level 
varied between 0.1mlux and 1 mlux. The atmospheric 
conditions were clear. Object ranges varied from about 
10 up to several hundreds of meters. The greenish image 
from the image intensifier was converted to a grayscale 
image for further processing. 

Figures 2-6b show the color photographs that were 
selected to serve as source images. The source and target 
images represent entirely different scenes, but they both 
contain similar details (e.g. the source and target images 
may both show trees and buildings, although the actual 
type of trees and buildings are not the same). 

To demonstrate the effectiveness of the procedure for 
grayscale nightvision imagery, we applied the color 
transfer method to colorize the central square region of 
the target images shown in Figures 2-6a, using the color 
images in Figures 2-6b as the source images. The 
resulting colorized images are shown in Figures 2-6c. 



Corresponding daytime color photographs of these 
scenes are shown in Figures 2-6d. Notice that in all these 
examples the resulting colorized nightvision images 
(Figures 2-6c) have a natural daylight color appearance 
with color characteristics that are similar to those of the 
corresponding source images. 

Figure 6 shows an example in which an oil painting 
called ‘ ‘Old Oak Tree’ ’ , by the Dutch painter Barend 
Cornelius Koekkoek (1803–1862), was adopted as the 
source image. The corresponding colorized nightvision 
image has an appearance which is quite natural, and its 
color characteristics resemble those of the oil painting.  

 
4 Concluding remarks 

We showed that a recently introduced method to transfer 
a source image’s color characteristics to a grayscale 
target image [14] can be used effectively to give single-
band intensified nightvision imagery a natural day-time 
color appearance. 

The procedure transforms both the source (color) 
image and the target (grayscale) image into a 
perceptually decorrelated color space. In this color space 
a best matching source pixel is determined for each pixel 
of the target image. The matching criterion uses the first 
order statistics of the luminance distribution in a small 
window around the source and target pixels. Once a best 
matching source pixel is found, its chromaticity values 
are assigned (transferred) to the target pixel while the 
original luminance value of the target pixel is retained. 
The only requirement of the method is that the 
compositions of the source and target scenes resemble 
each other (both images should contain similar details). 
We applied the method to a set of single-band grayscale 
intensified nightvision images. The resulting false color 
nightvision images have the appearance of the 
corresponding color source images. Such a full color 
representation of night-time scenes may be of great 
ergonomic value by making the interpretation 
(segmentation) of the displayed scene easier (more 
intuitive) for the observer. 

The color transfer method only uses 4 values for each 
sample pixel in the color source image: the two 
chromaticity values of the sample pixel and the first order 
statistics (mean value and standard deviation) of the 
luminance distribution in a small local neighborhood 
(7x7 window) centered on the sample pixel. This implies 
that we only need a representative list of 4-tuples to 
apply a natural day-time color appearance to a single-
band nightvision image. Hence, there is no need to 
actually store the source images from which the color 
information is derived. A system that is equipped with a 
look-up table of characteristic numbers for different types 
of backgrounds is sufficient to enable the observer to 
adjust the color mapping to the scene being viewed. A 
GPS based system may even automatically choose the 

appropriate list of color samples, depending on the actual 
position and viewing direction of the nightvision device. 
 
The method may be improved by using a different 
matching procedure. One could for instance use (a range 
of) different texture metrics, local similarity metrics [7, 
8], or mutual information [6] in the matching process.  

Since there evidently exists no unique mapping 
between luminance statistics and color distributions, the 
goal of transforming a grayscale intensified nightvision 
image into a full color day-time image can never be fully 
achieved. However, the fairly simple method employed 
here allows one  (1) to settle for a single mapping that 
works satisfactorily in a large number of conditions (e.g. 
by selecting the color statistics of a generic representative 
scene), or (2) to adapt (optimise) the color mapping to 
the situation at hand (e.g. by selecting the color statistics 
that perfectly match the scene at hand).  
 
Appendix I : RGB to l� �  transform 

In this Appendix we present the RGB to l� �  transform 
[9]. This transform has recently been derived from a 
principal component transform of a large ensemble of 
hyperspectral images that represents a good cross-section 
of natural scenes. The resulting data representation is 
compact and symmetrical, and provides automatic 
decorrelation to higher than second order.   

The actual transform is as follows. First the RGB 
tristimulus values are converted to device independent 
XYZ tristimulus values. This conversion depends on the 
characteristics of the display on which the image was 
originally intended to be displayed. Because that 
information is rarely available, it is common practice to 
use a device-independent conversion that maps white in 
the chromaticity diagram to white in RGB space and vice 
versa  [3]. 
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The device independent XYZ values are then converted 
to LMS space by 
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Combination of (2) and (3) results in  
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The data in this color space shows a great deal of skew, 
which is largely eliminated by taking a logarithmic 
transform: 
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The inverse transform from LMS cone space back to 
RGB space is as follows. First, the LMS pixel values are 
raised to the power ten to go back to linear LMS space. 
Then, the data can be converted from LMS to RGB using 
the inverse transform of Equation (4): 
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Ruderman e.a.  [9] presented the following simple 
transform to decorrelate the axes in the LMS space: 
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If we think of the L channel as red, the M as green, and 
S as blue, we see that this is a variant of a color opponent 
model: 

                 

Achromatic

Yellow-blue    

Red-green     

r g b

r g b

r g

µ + +

µ + -

µ -

   (8) 

After processing the color signals in the lab  space the 
inverse transform of Equation (7) can be used to return 
to the LMS space:  
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Figure 1. Illustration of the color transfer method. (a) 
The target grayscale photograph in (a) is colorized using 
the color photograph in (b) as the source image. The 
resulting colorized image is shown in (c). 
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Figure 2. Application of the color transfer method to the 
intensified image in (a) using the color photograph in (b) 
as the source image yields the colorized image shown in 
(c). A daytime color photograph of the actual scene is 
shown in (d). 
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Figure 3.  As Figure 2. 
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Figure 4.  As Figure 2. 
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Figure 5.  As Figure 2. 
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Figure 6.  As Figure 2.  The target image (b) is an oil 
painting called ‘ ‘Old Oak Tree’ ’ , by the Dutch master 
Barend Cornelius Koekkoek (1803–1862).  
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