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Abstract – Mutual-aided target tracking and 
identification (ID) schemes are described by exploiting the 
couplings between the target tracking and object ID 
systems, which are typically implemented separately. A 
hybrid state space approach is formulated to deal with 
continuous-valued kinematics, discrete-valued target type, 
and discrete-valued target pose (inherently continuous but 
quantized). We identify ten possible mutual aiding 
mechanisms with different complexity in different levels. 
The coupled tracker design is illustrated within the context 
of using ground moving target indicator (GMTI) and 
high-range resolution radar (HRRR) measurements as 
well as digital terrain elevation data (DTED) and road 
maps. The resulting coupled tracking and ID system is 
expected to outperform the separately designed systems 
particularly during target maneuvers, for recovering from 
temporary data dropout, and in a dense target 
environment. We simulate HRRR ID support information 
to assist in pose-model selection of an Interacting Multiple 
Model (IMM) tracker using GMTI measurements.  

Keywords: Fusion, Tracking, Identification, Pose, IMM.  

1. Introduction 
 Radar tracking algorithms typically model a target of 
interest as a point source in space (i.e., an equivalent RCS 
center). The algorithms utilize ranging measurements 
(range, range rate, elevation and azimuth of the line of 
sight (LOS) from radar to target) to estimate the target 
kinematic state (position, velocity, and/or acceleration) by 
a tracking Kalman filter. 
 High-range resolution radar (HRRR), on the other hand, 
attempts to extract a target range profile and to compare it 
with known profile templates for matching, thus achieving 
target type classification. Range profile is one-dimensional 
measurement of target radar reflectivity along the radar to 
target LOS, thus being a function of the LOS angles. This 
look vector can also be expressed in terms of the aspect 
(or articulation) and depression angles in the target body 
frame, called a “pose,” as illustrated in Figure 1. For 
practical reasons, a target is typically pre-sampled into a 
template library in its range profile at discrete poses. A 
successful template matching therefore classifies the target 
type and at the same time produces the pose at which the 

range profile is viewed. Figure 2 shows a high-resolution 
range profile. 
 It has been recognized [1] that couplings between 
tracking and classification systems via pose, kinematic, 
and association constraints can be exploited to improve 
performance such as determining the target ID (note: ID 
distinguishes between targets of the same class). However, 
most target tracking and classification systems are 
implemented independently. This has both theoretical and 
practical reasons. One practical limitation in the past was 
the lack of sensor accuracy/resolution and powerful 
computers for reliable implementation in real time. When 
target tracking and ID are considered jointly, we deal with 
a hybrid space. That is, the target state vector and its 
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measurements in target tracking systems are continuous-
valued (real numbers) whereas the target type is discrete-
valued and so is the target pose due to quantization. The 
relationships between a target state vector and its 
measurements are well understood analytically. However, 
it is difficult to establish analytic models between a target 
type and its range profiles for all possible poses (except 
for two-dimensional look-up table interpolation from a 
template library). Furthermore, there are no adequate 
dynamic models (except probabilistic) relating the 
continuous kinematic state and the discrete pose and their 
respective measurements for a moving target, which may 
undertake maneuvers. 
 One approach to solving the technical challenges while 
meeting the application needs is to explicitly exploit the 
couplings between tracking and ID systems. [2] In this 
paper, we will utilize ground moving target indicator 
(GTMI) and HRRR measurements as well as digital 
terrain elevation data (DTED) and road map as a case 
study to examine all possible couplings between the target 
tracking and target identification systems. We identify 
those couplings that have a high potential to improve the 
overall system performance and develop necessary 
mathematical methods to characterize the couplings for 
mutual aiding. 
 
2. Tracking and ID Couplings 
 In this paper, we will focus on typical air-to-ground 
scenarios where the tracking and ID sensors will be 
limited to GMTI and HRRR with DTED and road maps. 
Other advanced sensor modes such as ISAR and MTIm 
can also be added. Couplings between target tracking and  
ID with GTMI and HRRR measurements can take place in 
three levels, namely, measurement, filtering, and 
utilization, with the following list of ten possible 
couplings as visualized in Figure 3. The list is meant to 
overview methods and points the reader to references for 
more information. Space limits a full delineation. 
 
1. Type for data association [A]. [1,3,4] Target type 
information can be used to improve the process of 
associating radar returns with correct target tracks 
particularly when closely spaced or crossing targets are 
encountered. It is equally helpful when the target 
disappears and then reappears due to obscuration or after 
it slows down below the minimum detectable velocity 
(MDV) for a sharp turn. 
 
2. Type as kinematic constraints [B]. [1,2] For a 
particular type of targets, its possible range of maneuvers 
(maximum speed, acceleration, turn rate, off-road 
capability, etc.) can be used to select the most appropriate 
set of models for the tracking filter and to reinforce this 
particular type of target models by increasing its 
contribution (probabilistic weighting) toward the final 
state estimate. 
 

3. Pose-derived acceleration [C]. Ground vehicles such 
as tanks tend to move at constant speeds, maneuvering by 
turning sharply at “random” times. The resulting trajectory 
resembles a collection of connected arcs separated by 
occasional tangential line segments [5]. The centripetal 
acceleration can be determined from the vehicle speed and 
the rate of change of orientation during acceleration. In a 
hostile environment, the constant speed will be close to 
the maximum value as allowed by the vehicle design and 
the terrain. If the consecutive pose readings from the 
target identification system allow us to estimate the rate of 
change of orientation, the target acceleration can be 
derived as an input to the tracking system [6, 7]. For an 
airborne target such as helicopter and aircraft, the link 
between the body attitude and acceleration has been 
proposed for tracking improvement [8, 9]. 

4. Pose as a filter model selector [D]. If the above pose-
derived acceleration estimate in an IMM [2] is difficult or 
not practical due to complexity or lack of accuracy, an 
alternative approach is to obtain from the sequence of 
pose changes a set of probabilistic weightings on the 
multiple models used by the tracking filter. 
 
5. Pose as a derived measurement [E]. [1,2]. For ground 
vehicles, their velocity vector is mostly aligned with the 
body longitudinal axis. As a result, the pose estimate can 
be used as a derived measurement of the direction of the 
target velocity vector. 
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Figure 3.  Tracking and ID couplings. 



 

 

6. Terrain/road-constrained kinematic updating [F]. 
[2,10] The width of a road when read from a digital map 
can be used as position constraints for updating and 
prediction. For an on-road vehicle, the curvature of a road 
ahead provides an early indication of turn maneuver and 
its turning radius, which can be used to increase the 
likelihood of the turn model of the tracking filter.  
 
7. Resolved scatter Doppler for estimating body motion 
[G]. If the Doppler associated with individual scatterers 
on a target can be resolved, it can provide measurements 
to estimate body motions. Such a motion estimate can be 
used to track pose and particularly sharp turns at stop or at 
a speed below MDV. The detected rotation of major 
scatterers can be used at least to weigh in favor of the turn 
maneuver model in the tracking filter. 
 
8. Kinematics and terrain/road data for narrowing 
search space [H]. .A vehicle attitude and its rate of 
change can be determined from its velocity vector and the 
local terrain gradient. In addition, for ground vehicles, 
their heading (velocity vector) is mostly aligned with the 
body centerline (no sideslip angle). As a result, an 
accurate estimate of the velocity vector (i.e., body 
longitudinal direction) and its estimation error covariance 
can be converted into a pose estimate and its confidence 
interval. Together, they can be used as the reduced search 
space for pose estimation and type identification. 
 
9. Kinematics to assist target identification [I]. The 
kinematic estimates for each target type under 
consideration can be used to differentiate one from 
another. This can be done at least in two ways. One is to 
fuse the probability of each type being true as derived by 
the tracking filter with the statistical measure of each type 
based upon matching between the current range profile 
measurement and all type templates. The other way is to 
exclude certain types of targets based upon the observed 
dynamic behavior and trajectory pattern, which they are 
incapable of by design. 
 
10. Call for better imaging sensors [J]. The GMTI 
tracking filter may issue requests for additional resource 
such as ISAR and MTIm modes for better target 
identification or more accurate pose estimation to help 
HRRR at critical moments. It is important to know the 
limits of each sensor and know when to make the call. 

 Target type and kinematic state may be considered 
jointly for group tracking [10] and for determining other 
tactical information such as who comes from where 
(source) and heads toward where (sink) using which route 
(line of communication). Among the list of possible 
couplings between the target tracking and target ID 
systems described above, we concentrate below on the 
filtering aspect in greater details in the next section. 

3. Feature-Aided Tracking 
 In this section, we look into those coupling mechanisms 
that are relatively simple and of high potential, by which 
target tracking algorithms can be aided with pose 
estimates. Target feature integration (e.g. shape, signal) 
allows for measurement verification as well as robust 
target pose (position and orientation) estimation. 
 For fixed wing or rotary wing aircraft, the orientation is 
directly related to target acceleration (direction and 
amplitude). This relationship has been proposed to 
enhance aircraft tracking with imaging sensors [11,12,13]. 
However, there is no such a connection for tracked or 
wheeled vehicles for they stay level on the terrain surface 
while turning. A single view of a turning vehicle looks the 
same as it going straight because almost no sensor can see 
the turning wheels. Nevertheless, ground vehicles roll 
over terrain surface, causing the velocity vector to be in 
the direction that the vehicle is pointed except for small 
sideslip angles. Multiple views of the same target, 
however, can reveal if it is turning and if so, how fast.  
 Three methods (C, D, and E) as shown in Figure 3 
exploit such couplings. Their performance will vary as a 
function of the pose estimate accuracy under different 
operating conditions such as at stop, in steady motion, and 
making turns. 
 
3.1 Method E: Pose as a derived measurement 
 In the early work [1,2], the pose estimate corresponding 
to the maximum range profile matching for a given target 
type is used as a derived measurement to the associated 
tracking Kalman filter. By the assumption that the ground 
vehicle velocity vector is mostly aligned with its body 
principal axis, this pose estimate when transformed to the 
body frame or a common reference frame provides a 
measurement of the vehicle heading or the direction of the 
velocity vector. 
 When the range profile template has a very fine 
resolution, that the template matching finds the right pose, 
and that the sideslip angle is small, this pose estimate can 
provide an accurate and fast updating of the Kalman state. 
This is because a pose estimate bears more information 
than a range or range rate. The latter as a scalar is the 
projection of the velocity vector onto the LOS vector, thus 
less informative than the vector direction itself. 
 However, when the above conditions do not hold, the 
pose estimate may be poor or even erroneous. If still used 
as a direct measurement, it would adversely affect the 
tracking performance. Other methods can be used instead. 
 
3.2 Method C: Pose-derived acceleration 
 This approach attempts to estimate target acceleration 
and thus can be very effective during target maneuvers. To 
implement this approach, the linear acceleration is 
estimated from a sequence of poses by determining its 
turning rate. To drive the turning rate from poses, 



 

 

consecutive multiple looks are required and the target pose 
is tracked as an independent state. At a first glance, this is 
a simple two-state (pose and pose rate) process. In reality, 
however, it is much more complicated. First, to an 
observer, the unknown pose is a random variable subject 
to large changes at random due to maneuvers. More 
importantly, the observed pose from a target identification 
system such as 1D HRR matching is artificially made 
discrete due to angular quantization and since the 
recognition/matching process is not perfect, the pose value 
may be erroneous. 
 We actually encounter a problem of estimating the 
underlying maneuver from a sequence of discrete-time 
discrete-valued pose observations (a point process). The 
underlying maneuver is estimated from the sojourn time in 
each pose and the transition from one pose to another, 
rather than the individual poses. As a result, the pose 
accuracy is less an issue (a limiting factor) in this 
formulation than Method E described above. 
 The hybrid estimation theory based on continuous-time 
stochastic differential equations [14] may be applied to 
this problem. However, since no closed-form solution is 
available for the continuous-time filter, its implementation 
would require real-time integration of differential 
equations (high-order integration schemes with variable 
integration steps may be required to ensure good 
numerical behavior). In contrast, a discrete-time 
formulation may be easier from an implementation point 
of view. The discrete-time mode filters for point processes 
have been derived [15,16] and applied to maneuvering 
target tracking with an imaging sensor [7], which can be 
used to model the pose measurement of HRRR and its 
dynamics. 
 Due to the inherent randomness, measurement noise, 
and quantization errors, the pose dynamics is suitably 
characterized by a probabilistic transition matrix, with the 
transition probability from one pose to another as the 
inverse sojourn time in the pose proportional to the 
underlying maneuver. The sequence of pose 
measurements is modeled with a confusion matrix. The 
resulting mode filter [15,16] provides an estimate of the 
unknown acceleration (or turning rate) as well as its 
estimation error covariance. In this way, not only the 
orientation-derived acceleration but also its estimation 
error covariance can be incorporated into a second-order 
extended Kalman filter (EKF) to ensure performance 
robustness. [7]  
 
3.3 Method D: Pose-aided target selection 
 The interacting multiple model (IMM) estimator [17] is 
popularly used to describe the target kinematics with 
different maneuvers. The IMM algorithm delivers its final 
estimate and covariance as the weighted sums of all model 
filter estimates and their respective covariance matrices. 
The weights used in the summation are the probability for 
the corresponding model being true.  

 In most implementations, however, the IMM algorithm 
determines its model weights solely based on the residuals 
of its measurements under the general Gaussian noise 
assumption. As such, it does not use any external 
“support” information except for the a priori probability 
for each model as being true at the very beginning.  
 With HRRR available, each time the target 
identification system processes a range profile 
measurement, the mode filter will produce the type and 
pose estimates as well as their probabilities as being true. 
By consequence, in addition to using this pose estimate as 
an extra measurement to the tracking filter (Method E) or 
deriving an acceleration estimate from it (Method C), we 
may simply generate a probabilistic support for a 
particular kinematic model in the tracking filter. 
 The pose-derived model weights can then be combined 
or fused with the kinematic-based model probabilities 
using either the point-process filtering or by a Bayesian 
inference method or with a belief classification filter. This 
external supported IMM algorithm, though being not as 
fast as Method E or C in responding to a maneuver, is 
definitely simpler and may be more robust in cases where 
pose estimates are poor. 
 
4. Kinematics/Terrain-Aided Target 
ID/Pose Estimation 
 Target kinematics and terrain/road data can be used to 
improve target ID and pose estimation. Three techniques 
are described below. The first two techniques attempt to 
reduce the type and pose search space over which the 
range profile templates will be searched for matching 
(Method H of Figure 3) whereas the third technique is to 
fuse type decisions made from GMTI and HRRR 
measurements (Method I). 
 One technique to aid target ID is to reduce the set of 
possible types for a target under surveillance based on the 
kinematic estimate and observed trajectory pattern in 
comparison to the design capability of each type, the 
terrain conditions, and the tactical environment. [1] This 
may exclude certain types from being further considered 
in the tracking filter. 
 A more direct technique is to obtain a reliable interval 
for possible target poses prior to the search in range 
profile for a given target type. [1] Target position and 
velocity estimates and their standard deviations can be 
used for this purpose. When DTED data is available, a 
vehicle’s attitude can be estimated from the gradient at its 
location given the heading (i.e., along the velocity vector). 
If the vehicle is on road, the road direction can be used as 
a first estimate of its heading. However, the accuracy of 
such an attitude estimate depends on the digital terrain 
grid resolution and its accuracy, the position and velocity 
errors, and a possible sideslip angle. 
 In addition to aiding target pose estimation, the DTED 
and road map can also be used to improve kinematic state 
estimation. [10] With the vehicle velocity known, the 



 

 

change rate in attitude is determined by the terrain 
gradient. Similarly, the curvature of a road can be used to 
predict the imminent turn maneuver as well as turning 
radius given the speed. The local slope of the terrain is 
likely to influence the vehicle acceleration, e.g., slow 
down going uphill while speed-up downhill. These 
quantities can be incorporated into target tracking 
algorithms as extra measurements and/or model weighting 
factors. Moreover, the road width can also be used as 
constraints to delimit the position estimate and its 
prediction for better road following. 
 Many databases of range profile templates and 
techniques of detection and classification have been 
developed and reported in the literature. [1,4,18] To 
improve their target classification in terms of search speed 
and successful rate of identification, a third technique is to 
fuse the probability for each type being true derived from 
the tracking filter’s kinematics with the statistical measure 
of each type based upon matching between the current 
range profile measurement and all types in the template 
library. This is the complementary operation of Method D 
as described in Section 3.3. 
  
5. Hybrid Modeling For Filter Design  
 In this section, we present the modeling of discrete-
valued pose dynamics, its measurement process as well as 
estimation. 

The kinematic state (i.e., position, velocity, and/or 
acceleration) of a target when viewed by a tracking radar 
with ranging measurements (i.e., range, range rate, 
elevation and azimuth) is continuous-valued (or real-
valued). On the other hand, an HRRR provides 1D range 
profiles of a target (i.e., the target radar reflectivity along 
the radar to target LOS direction). Since each target’s 
template library only contains its range profiles sampled at 
discrete poses (i.e., the aspect and depression angles in the 
target body frame), template matching therefore provides a 
quantized pose reading, which thus becomes discrete-
valued. Given a range profile measurement, its correlation 
with the entire template library typically does not provide 
a single decisive matching at a discrete pose for a 
particular type but rather a distribution of correlation 
values over a range of possible poses for different target 
types. This is due in part to cross-correlation between 
range profiles at adjacent poses (or some features 
extracted from the range profiles), thus defining the 
angular resolution of pose estimation as well as the 
inherent discernibility (or lack of discernibility) for a 
target type and between target types.  
 Three models of the pose measurement process and their 
associated estimation filters are presented below. Due to 
quantization, the underlying pose of a target in a particular 
type, denoted by p(t), takes a value from a discrete set: 
 
 p(t) ∈ P = {p1, p2, .. , pM} (1) 
 

Introduce an indicator vector ρ(t) for the discrete variable 
p(t) such that the ith element of ρ(t) is: 
 

 ρi (t) = 


 1 p(t) = pi

0  otherwise   (2) 

 
5.1 Modeling As Discrete-Time Point Process 
In the first model, a decision is made by picking the type 
and pose corresponding to the largest correlation peak. 
The output of this measurement process is denoted by 
ni(t) = 1 when a pose estimate of p(t) = p1 is declared for i 
= 1, …, M. The HRRR matching outcome is thus mapped 
into an indicator vector  n(t) = [n1(t), .. , nM(t)] T. 
 The process of range profile measurement, matching, 
and classification is not perfect. The HRRR matching 
outcome ni(t) is not always equal to ρi(t) and this 
discrepancy can be characterized by the discernibility 
matrix Dk = [ dk

ij ] as: 
 

 dk
ij = P{nj(t) = 1 | ρ i(t) = 1, φk(t) = 1} 

 

with     ∑
j = 1

 M 
  dk

ij = 1  (3) 
 

where φk(t) is the kth element of φ(t), which is the 
underlying dynamics state vector of the discrete-valued 
pose. This is also the arrival rate of nj(t) at time t when 
ρi(t) = 1 for a given maneuver φk(t) = 1 (when n k(t) is 
viewed as a point process). 
 After the radar platform’s motion is compensated for 
from the HRRR measurements, the changes of pose over 
time reflect the target dynamics. For a ground vehicle 
target, it is reasonable to describe the pose transition under 
maneuver (acceleration upon velocity) in a probabilistic 
setting.  For the maneuver kinematic analysis, we use a 
constant velocity and constant acceleration white noise 
models and a Markov acceleration process model. [2]  
 Assume that any maneuver will take one of N possible 
acceleration vectors a(t) ∈ A = {a1, a2 , …, aN} or 
equivalently a(t) = Aφ(t) with φ(t) being the indicator 
vector of a(t), similarly defined as in Eq. (2). Since the 
maneuvering strategy is almost unknown, the random 
change of acceleration may be modeled as a homogenous 
Markov chain, specified by its transition probability 
matrix φΠ = [ φπ ij ] as: 
 

πφ
ij = P{a(t + 1) = aj | a(t) = ai} = P{φj(t + 1) = 1 | φi(t) = 1 }  

 

with    1
1

=∑
=

N

j
ij
φπ  (4) 

 
Under a particular maneuver, the pose dynamics is also 
assumed to be a Markov process and described by the 
matrix of transition probabilities ρ

kΠ =[ ρπ kij ] with: 
  



 

 

 πρ
kij = P{p(t + 1) = pj | p(t) = pi, a(t) = ak}  

 

         = P{ρj(t + 1) = 1 | ρi(t) = 1, φk(t + 1) = 1}  
 

with      1
1

=∑
=

M

j
kij
ρπ , k=1,2,…,N (5) 

 
where each transition probability can be chosen to match 
the mean transition time from one pose to another under 
the maneuver. 
 This model indicates that the dynamics state φ(t) is 
related to the range profile matching outcome n(t)  via the 
pose variable ρ(t). As a result, φ(t) and ρ(t) are two 
“hidden” processes and their combination affects the range 
profile measurements over time. Define the composite 
state of φ (t) and ρ(t) as: 
 

 ξ = [φ1ρ1, ., φ1ρM, ., φNρ1, ., φNρM]T = φ(t) ⊗ ρ(t)  (6) 
 

where is the Kronecker product. The original processes 
can be reconstructed from ξ(t) as: 
 

 φ(t)  = [ IN×N ⊗ 1T
M ]   and   ρ (t)  = [1T

N  ⊗ IM×M]  (7) 
 

where IN×N stands for an N by N identity matrix and 1N 
indicates an N-vector with all ones, respectively. 
 It is easy to verify that  ξ(t) is also a Markov process 
with the transition probability matrix ][ ξξ π mnΠ =  

calculated from φΠ and ρ
kΠ as: 

 

 πξ
mn = P{ξn(t + 1) = 1 | ξ m(t) =  1} 

 

        = P{φk(t + 1) = 1, ρj(t + 1) = 1 | φℓ(t) = 1, ρi(t) = 1} 
 

        = πρ
i j k  π

φ
 ℓ k  (8) 

 
where the indices of (i, j) of ρ(t) and (l, k) of φ(t) define m 
and n in  ξt), respectively. 
 A matrix form of the arrival rate for n(t) as related to the 
composite state variable ξ(t) can now be written for the 
HRRR measurement process as: 
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 (9) 

 
The estimate of the composite state ξ(t) in the mean square 
sense given the current and past pose measurements 
denoted by Nt = {n(s), s ≤ t } is written as: 
 

 }|)({)|(ˆ tNtEtt ξξ =  (10) 
 
which as the conditional expectation affords a natural 
interpretation that its ith component is the a posteriori 
probability of ξk(t) = 1 (i.e., the ith state is true) given Nt.  

 With the above models, the mode filter [7,15,16] for 
discrete-time point process can be applied to estimate the 
composite state and its estimation error covariance matrix.  
 
5.2. Bayesian Modeling 
Instead of making a “hard” decision as to which pose and 
type for each range profile measurement, the second 
model generates a vector of likelihood functions for all 
possible poses and types according to the correlation 
between the range profile measurement and all items in 
the template library. The correlation values can be 
normalized to indicate their respective “likelihood” to be 
true given the measurement. Those values that are below a 
certain threshold can be excluded from further 
consideration, thus reducing the problem dimensionality. 
Alternatively, a Gaussian density function can be assigned 
to each correlation when the noise terms in all range bins 
are assumed to be independent. Since correlation is a 
linear operation, the resulting correlation noise is Gaussian 
distributed according to the central limit theorem. 
 A range profile measurement at time t is denoted by z(t). 
Its correlation with the reference range profile sampled at 
pose p(t) = pi in the template library is denoted by ci(t). 
The resulting likelihood function for pose i under dynamic 
state k is denoted by gk[ci(t)] for i = 1, …, M and k = 1, 
…, N. Put individual likelihood functions into a vector: 
 
 L[z(t)]=[g1[c1(t)],.,g1[cM(t)],.,gN[c1(t)],.,gN[cM(t)]]T (11) 
 
Define the composite state estimate as the conditional 
expectation (i.e., the a posteriori probability) as in Eq. (9). 
Then applying the Bayes’ formula, a recursive algorithm 
to calculate the composite state estimate is obtained with  
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being the measurement updating equation; 
 
 )1|1(ˆ)'()1|(ˆ −−=− ttΠtt ξξ ξ  (13) 
 
being the one step ahead prediction equation, and 

0
ˆ)0|0(ˆ ξξ = being the initial condition. 

 The estimates of ρ(t) and φ(t) and their respective 
covariance matrices can be recovered from the composite 
state estimate )|(ˆ ttξ and cov[ )|(ˆ ttξ ], which can be used 
in turn in the tracking filter via Method C, D, or E 
described in Section 3. 
 
5.3 Modeling with Confidence Belief Measure  
A belief classification filter can be constructed based on 
statistical features of an observed object in HRRR returns. 
As shown in Figure 2, a possible set of such features 
consist of s-extracted salient peak amplitudes A = [a1, a2, 



 

 

…, as] at the respective peak locations L = [l1, l2, …, ls] for 
each pose p ∈ P = {p1, p2, …, pM} of a given target type. 
A statistical approach will first estimate the probability 
that a peak occurs in a specific location lq given that the 
observation is from the target of interest at pose pr, 
denoted by p{lq|pr} and the probability that the peak has 
amplitude aq given that the peak is at the location lq for the 
target at pose pr, denoted by p{aq| lq, pr}. The joint peak 
location and peak amplitude likelihood given the target 
pose is calculated as the product of the individual 
likelihoods: 
 
 p{aq, lq,| pr} = p{aq | lq, pr} p{lq|pr} (14) 
 
The a posteriori probability for the pose is calculated 
using the Bayes’ rule as: 
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 The above equations are similar to those given in Eqs. 
(11)-(13). As pointed out in [1], however, this Bayesian 
calculation only provides a relative probabilistic 
information contained within and with respect to the set of 
original hypotheses, rather than global information. As a 
result, the Bayes’ rule alone will not be able to reject 
incorrect decisions due to unknwon object or statistics. 
Since the information required to eliminate those errors 
can be derived from the likihood values, it becomes 
evident to incorporate the likelihood information into the 
decision process in the form of a belief measure with an 
associated belief-probabilistic uncertainty. 
 The decision confidence measure can be based on the 
hypothesis likelihoods using their probability density 
functions developed for each hypothesis. Larger 
likelihood decisions should have a higher confidence. The 
cumulative distribution function (CDF) mirrors this 
concept and can thus be used to determine the decision 
confidence. The confidence that the observed peak aq is 
associated with the given target at pose pr at the event time 
k is defined as: 
 

 r
HypC (k) = F{ p{aq, lq,| pr} ≤ x} (16) 

 
where the subscript indicates the confidence measure is 
for a known hypothesis, x is a likelihood value, and 0 ≤ 
F{•} ≤ 1 stands for the CDF. The corresponding 
uncertainty value is defined as r

HypU (k) = 1 - r
HypC (k). 

The beliefs are found using: 
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Put the beliefs for individual pose hypotheses into a vector 
as kBel =[ 1

kBel ,…, M
kBel , Unk

kBel ]T, where “Unk” 
represents what is beyond the known hypitheses (i.e., an 
unknown pose value not sampled for the template library 
in our case). The dimesnion is thus increased from M to 
M+1. Dnoting the probabilistic transition matrix by Π, we 
can then write the propagation of the beliefs over time as: 
 
 1+kBel = Π kBel + kU  (17c) 
 

where kU =[ 1
kU , …, M

kU , Unk
kU ]’ is the uncertainty, 

typically modeled as a zero-mean Gaussian process with a 
known covariance matrix. 
 The above updating and propagation equations of the 
belief classification filter can be formulated in conjuntion 
with the underlying acceleration (i.e., the composite pose 
and acceleration state). In this way, it yields a joint target 
tarcking and ID system in terms of the belief probabilistic 
state and measurement equations and its filter [1]. 
 
6. Simulation Results 
 In this section, we present simulation results assessing 
the benefits of mutual aided target tracking and ID. Of 
special interest is to evaluate the benefits of correcting the 
maneuver model hypotheses with an external information 
support (Method D: Pose as a model selector for an IMM). 
To do this, a stand-alone maneuvering target tracking 
IMM estimator is used with positional measurements only 
to set up the performance benchmark. Right after the 
maneuver, we apply the HRRR-derived external support 
information [1, 18] to assist the IMM estimator. The 
performance improvement in terms of RMS errors (of 
position and velocity) is assessed as a function of how 
early and how well the external source weighting is 
provided as compared to the benchmark. This information 
can also be used as design requirement, which a pose 
estimation algorithm needs to meet in order to benefit 
from the GMTI and HRRR interaction. 
 The measurement error standard deviations used in the 
filter are twice those used in the truth data generation (the 
filter is pessimistic about its measurements). Figure 4 
shows the model probabilities when the accelerations used 
in Model 1 and Model 2 are half of the true values. The 
three models are made closer than the actual data. It is thus 
less sure during the quiescent without maneuver. Figure 5 
shows the model probabilities when the accelerations used 
in Model 1 and Model 2 are double of the true values. It 
has good model separation during the non-maneuver 
period but is less sure about the maneuvers because its 
models are larger than the actual data. The RMS values 
are in Table 1. 



 

 

 
Table 1. Position and Velocity Estimation Errors Statistics 

STD (Ax, Ay) rms-X rms-Y rms-VX rms-VY 

÷ 2 12.9613 19.4996 0.2124 0.3881 σx,y = 50m 

σψ = 1o ×2 11.9094 52.7609 0.2463 1.1802 

 
7. Summary 
 In this paper, we first described ten possible couplings 
between target tracking and target identification systems 
for mutual aiding to enhance their respective performance. 
We then outlined three specific techniques for making use 
of target pose information to aid target tracking on the one 
hand and also three specific techniques to use target 
kinematics and DTED as well as road map to aid target 
pose estimation on the other hand. A hybrid state space 
modeling was presented to characterize the continuous-
valued kinematics, discrete-valued target type, and 
discrete-valued target pose (inherently continuous but 

quantized). These models are indispensable for mutually 
aided tracking filter design. A pose-derived acceleration 
model selection was highlighted in this paper using HRRR 
support identification measurements. Future reports will 
demonstrate results of each method presented. 
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Figure 4. IMM track and ID with acceleration models 
(acceleration = half true values). 
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Figure 5. IMM track and ID with acceleration models 
(acceleration = double true values). 


