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Abstract – We present here the Probabilistic Unit Life Status 
Estimation (PULSE) methodology and software architecture.  
The PULSE approach leverages Temporal Belief Networks 
(TBNs) to model the subject’s fundamental physiological 
dynamics (e.g. shock response) over time, to perform life status 
estimation in a robust manner that accounts for sensor hardware 
malfunctions. We developed a limited-scope prototype using our 
in-house TBN engine to estimate clinical status, which served as 
a framework to demonstrate the PULSE approach for two 
separate but related clinical assessment tasks. In the first task, 
the PULSE prototype provides a life status assessment of a 
simulated unit, allowing for the principled introduction of noise 
to demonstrate the system’s ability to detect sensor failure. In the 
second task, the PULSE prototype provides a clinical assessment 
of a unit’s degree of acclimatization, using pre-recorded data 
from studies of soldiers at altitude. 
 
Keywords: Life Status Assessment, Acclimatization 
Assessment, Temporal Belief Networks. 

1 Introduction 
The growing digitization of the battlefield will produce 

a quantum leap in the quality of medical care afforded to 
thousands of soldiers in the field. This important advance 
will be enabled by near real-time physiological status 
monitoring of warfighters, incorporating an array of 
personal biomedical sensors worn by each soldier.  

To realize such enormous potential requires 
sophisticated Sensor Processing and Assessment (SP&A). 
In this paper we describe the PULSE (Probabilistic Unit 
Life Status Estimation) methodological framework and 
software architecture for the development of custom 
solutions to remote (telemedical) SP&A problems.  Our 
approach meets four criteria we have identified as crucial 
for SP&A software solutions; it is flexible, extensible, 
robust, and dynamic.   

An SP&A component must be very flexible, both in 
terms of its sensor inputs and its derived outputs. This is 
because the inputs from the sensor array may be custom 
configured for different situations; various combinations 
of sensors may be employed to provide such varied data 
as heart rate (pulse), blood pressure, respiration rate, body 
position and/or motion, core and skin temperatures, blood 
oxygen saturation, electroencephalogram (EEG), and 
electrocardiogram (EKG). Moreover, the active sensor 
configuration may change dynamically, depending on the 
inputs and outputs currently needed; for example, simple 
life status monitoring may suffice most of the time, but a 
sudden drop in pulse may necessitate activating an 
intensive monitoring mode, possibly adding more sensors 
to the active configuration.  

An SP&A component must be very extensible, 
because new and improved sensors are frequently 
developed, and it will be necessary to easily incorporate 
them into the SP&A component. Similarly, support 
hardware such as sensor harnesses, along with 
communication, logic, and power modules can all be 
expected to undergo regular upgrades, which the SP&A 
component must readily cope with. The same is true of the 
clinical estimation algorithms used within the SP&A 
component: these must be readily upgradeable. 

An SP&A component must be robust, i.e. it must 
utilize reasoning techniques that incorporate uncertainty. 
This is because it must cope with inherently uncertain 
data, characterized by a range of sensing and measurement 
artifacts, such as noise, burst errors, bias faults, or stuck 
sensor conditions. Moreover, given the difficult battlefield 
conditions anticipated, it is a given that any sensor may 
fail at any time, e.g. due to sensor dislocation or 
malfunction, or failure of the sensor array’s supporting 
components (e.g. power supply, communication links). 
This makes data collection still more uncertain, but the 
SP&A component will be expected to cope with such 
failures. 

An SP&A component must be dynamic in nature; it 
must incorporate temporal reasoning and dependencies, 
due to the temporal nature of the sensor data.  Without 
exception, the sensor data to be analyzed will have 
temporal dependencies which must be considered to 
properly deduce the clinical state. As a simple example, a 
single abnormally low blood pressure reading may not be 
especially significant, but several such readings over 
several minutes of monitoring would probably be cause 
for concern: they may indicate shock and impending death 
(although vaso-vagal syncope might also be suspected, i.e. 
fainting). 

The PULSE methodology and architecture have been 
designed with these criteria in mind.  To ensure both 
flexibility and extensibility, we have applied the PULSE 
approach to two separate domains with significantly 
different features.  In one domain, unit mortality detection, 
we used data from two simulated sensors to make 
diagnoses within a relatively small time window (several 
minutes).  In the other domain, acclimitization assessment, 
we utilize real (very noisy) data to make  diagnoses within 
a relatively long time window (12 days).  

To ensure robustness and temporal sensitivity, we 
leverage Temporal Belief Network (TBNs) technology 
(Kanazawa, Koller, and Russell, 1994; Nicholson and 
Brady, 1994; Murphy, 2002), which explicitly provides 
the temporal reasoning needed. TBNs provide great 
flexibility in modeling real world problems, including 



sensor processing and medical diagnosis. TBNs are also 
robust in the sense of providing probabilistic reasoning for 
dealing with uncertain data. We also expect to benefit 
from the modularized BN structures, which allow sensor 
behaviors to be modeled individually, providing the 
required extensibility needed. We expect that we can 
apply the powerful sensitivity analysis feature (Das et al., 
2001, 2002) to fault diagnosis of the modeled sensor 
array, thereby improving the output clinical state estimates 
by adjusting for sensor failures. We prefer TBN 
technology because it integrates the aforementioned 
features, especially the temporal aspect, which cannot 
readily be obtained from other traditional AI techniques 
such as Neural Networks, Rule-based Expert System, and 
Fuzzy Logic. 

The rest of the paper is organized as follows. Section 2 
provides a brief introduction to TBN technology. Section 
3 presents our methodology, and section 4 introduces our 
software framework. Our approaches to life status 
estimation and acclimatization assessment are detailed in 
sections 5 and 6 respectively.  

2 Temporal Belief Networks (TBNs) 
A Bayesian Belief Network (BN) (Pearl, 1988; Jensen, 

1996) is a graphical, probabilistic knowledge 
representation of a collection of variables describing some 
domain. The nodes of the BN denote the variables and the 
links denote causal relationships between the variables. 
The topology encodes the qualitative knowledge about the 
domain. Conditional probability tables (CPTs) encode the 
quantitative details (strengths) of the causal relationships. 
There are two key ideas in extending a BN to a TBN: 
1. All nodes of the BN are associated with particular 

time steps, simply by indexing the nodes with a time 
step value. The time steps may be irregular, especially 
if an event-driven scenario is modeled, or they may 
be regular, in all possible fixed increments. 

2. Some BN nodes for a given time step may have 
causal dependencies on nodes from earlier time steps 
(in addition to the usual causal dependencies on nodes 
from their own time step); such dependencies are 
called temporal dependencies. 

The result is a TBN (Dean and Kanazawa, 1989; 
Nicholson and Brady, 1994, Ghahramani, 2001; Murphy, 
2002). Figure 1 illustrates the general case of time 
indexing and temporal dependency. 
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Figure 1: General Temporal Dependency 

Variable Y(t) from time step t has causal dependencies 
on some variables X(i,t) from its own time step t; it also 

has causal dependencies on some X(i,t-j) from earlier time 
steps. When temporal dependencies between nodes are 
only from the immediately prior time step, we say we 
have a Markovian model. Refinements to the basic TBN 
extension paradigm are discussed in the following section, 
in particular iteration and estimation techniques. 

We introduce the formalism of a primary iterant, 
which is a template network consisting of all the nodes 
and causal links for a particular time step t of the TBN, 
together with any nodes and temporal links from prior 
time steps to step t. In this section we provide a simple 
example in the weather domain for the sake of 
explanation; in the following sections, we will provide 
specific examples for our target domains. In Figure 2, the 
example indicates that, for any given time t (t=3 is 
shown), there are two time-indexed variables in the TBN, 
namely Clouds(t) and Rain(t), and the Rain(t) variable for 
any time step t is causally dependent upon the variables 
Clouds(t), Clouds(t-1), and Clouds(t-2). Semantically, the 
diagram models the belief that the chance of rain 
occurring on any given day depends not only whether it’s 
cloudy that day, but also upon the cloud cover for the past 
two days. 
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Figure 2: Sample TBN Primary Iterant 

The primary iterant is the initial version of the TBN; it 
is also a template used to “iterate” the network, i.e. to 
enlarge the network to include the next time step. Iteration 
is a two-step process (illustrated in Figure 3): 
1. A copy of the primary iterant is produced with a high 

index 1 greater than the current network’s high index. 
2. The iterated network is then created by equating 

nodes of the current network and the primary iterant 
copy having the same indexed names. 
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Figure 3: TBN Iteration Process 

After much iteration, the TBN will inevitably grow so 
large that it becomes difficult to work with. To deal with 
this problem, we devised a technique of estimating TBNs 
using special nodes we call history nodes, which allow 
truncation of a TBN prior to a given iteration, with the 



truncated portion summarized in the history nodes; these 
are created as follows (illustrated in Figure 4): 
1. The index N of the latest desired complete iteration 

for the estimated TBN is chosen (N=26 in Figure 4). 
2. The history nodes will be those nodes with index <N 

having direct causal influence on (i.e. are parents of) 
nodes with index >=N. 

3. The belief values of the history nodes are noted. 
4. All non-history nodes with index <N are deleted, 

together with their incident causal links; any causal 
links between history nodes are also deleted, so that 
the history nodes are causally independent. However, 
causal links from history nodes to non-history nodes 
(their children) are preserved. 

5. The history nodes’ a priori belief values are then set 
as noted above. 
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Figure 4: TBN Estimation with History Nodes 

The causal independence of history nodes (which are 
always root nodes) is key to the estimation technique, as it 
allows us to set their belief values to our choice of 
historical information; we use this flexibility to help 
“preserve” belief values throughout the network. We 
found that this technique generally results in the estimated 
TBN matching the belief metrics of the full TBN to within 
purposes. The technique facilitates repetitive estimation as 
the TBN is iterated, keeping the working copy of the TBN 
reasonably small. It has the additional significant benefit 
of allowing the use of the same CPTs for all iterations of 
non-history nodes; this is because the parents of each non-
history node are always kept the same, by using the 
history nodes. Finally, it helps to reduce graphical clutter, 
although such clutter is generally unavoidable in practice 
(e.g. a large, fully specified spacecraft model), as each 
time iteration could require dozens of nodes. For various 
other exact and approximate inference algorithms for 
TBNs, see (Boyen and Koller, 1998; Kanazawa et al., 
1995; Murphy, 2002). 
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Figure 5: TBN software running Clouds/Rain 

example 

Using standard object-oriented programming 
techniques, an in-house software package for BNs was 
extended with new functionality for TBNs, including the 
ability to create, edit, save, load, query, iterate, estimate, 
retract, change the number of iterations kept, and check 
and change evidence in the context of PULSE.  

TBN iteration and estimation are invoked 
automatically, driven by user specified parameters. TBNs 
are saved in an XML format, including any posted 
evidence. All work was done in platform-independent 
Java. Figure 5 shows the software running the estimated 
TBN of Figure 4. 

3 A TBN Methodology for SP&A 
We have developed a methodology for the application 

of Temporal Belief Networks to the task of SP&A.  Our 
methodological approach captures the human expert’s 
approach to sensor failure detection.  Simply stated, given 
a set of metrics used to monitor any situation, if some 
subset of those metrics do not match the dynamic behavior 
that are known (whatever these behaviors are indicative 
of) it is likely that those metrics are being reported 
inaccurately.  

To illustrate the approach, consider the following 
(simplistic) example.  When driving a car, several metrics 
are used to monitor the speed and acceleration of the car – 
there is the sensation of acceleration, the sound of the 
engine, the appearance of the external world, and the 
speedometer.   As the car accelerates, certain observables 
are expected from each of these metrics – the speedometer 
needle moves clockwise, there is a sense of pressure 
against the seat back, etc.  If all metrics except the 
speedometer needle indicated acceleration was taking 
place, one would naturally assume (and likely be accurate 
in that assumption) that something was faulty with the 
speedometer itself. 

Different sensors have different operating 
characteristics, and an expert will have different levels of 
confidence in each sensor.  Furthermore, when observed 
metrics do not correlate with known possible behaviors, 
suspicion of sensor failure will be influenced by this 
confidence. Continuing with the car example, if the sense 
of pressure against the seat back was felt, yet the view 
outside the car appeared to be static, one might assume 
that acceleration was in fact occurring, but that something 
was wrong with the reporting of visual information 
(maybe the windshield was painted?) and not in fact the 
pressure information (corresponding to a greater 
confidence in the tactile sense of motion than the visual 
appearance of motion). 

 Figure 6 illustrates this approach to status estimation 
and sensor failure for life status estimation. Knowledge 
Elicitation (KE) work with medical experts will elicit 
information about physiological trends that would occur in 
biometric data corresponding to various physical 
conditions, e.g. the SME would likely indicate that serious 
arterial bleeding would result in increasing pulse and 
decreasing systolic pressure (due to severe shock). From 
this we can programmatically create a TBN (the 
correlative physiological model in the figure) that 
recognizes the biometric data waveform corresponding to  



Figure 6 Overview of Methodology for SP & A 

 the increased pulse expected during arterial bleeding, 
and save the TBN as a subnet in the library.   A 
comprehensive library of such subnets would be created 
covering all known physical conditions, for all biometric 
data types expected. 

Additionally, via more KE work with hardware 
engineers, the BN library would receive subnets (the 
sensor hardware model in the figure) that model the 
behavior of all available biometric sensors that could be 
used.  This provides confidence estimates for the various 
sensors employed, so that a set of behaviors that are not 
known will allow us to determine which hardware is most 
likely failing.    

 The Temporal BN subsequently assembled and used 
for assessment would load pertinent subnets from the BN 
library as building blocks, including: 1) subnets for the 
sensor hardware used; and 2) subnets for all known 
physical conditions derivable from the sensors chosen; 
this is shown in the center right portion of the figure. 
Finally, when the assembled Temporal BN is loaded into 
the belief network engine and used for assessments, 
incoming sensor data will produce waveforms (shown in 
the upper right of the figure) that will be recognized and 
correlated to a particular known physical condition. 
Failing that, we expect there must be some sensor error 
since we have covered all human possibilities, so the 
Temporal BN will trigger an error indication (shown in 
the lower right of the figure).  

4 A Software Framework for SP&A 
To demonstrate the utility and feasibility of our 

proposed temporal BN approach to SP&A, we developed 
the Probabilistic Unit Life States Estimation (PULSE) 
architecture.  The PULSE system leverages the Temporal 
Belief Network tools described to produce dynamic 
clinical assessments.  As a byproduct of the clinical 
assessment, the PULSE system also produces an 
assessment of reliability of the underlying hardware, and 
supports fault isolation analysis techniques.  

We have developed a modular architecture for the 
development and testing of TBNs for SP&A.  A schematic 
of this architecture is shown in Error! Reference source 
not found..    

 As seen in the diagram, there are three major 
functional components to the PULSE system: 
1 Simulation Layer - creates and/or provides the 

various biometric measurements to be used. 
2 Sensor Layer - retrieves biometric measurements 

from the simulation layer, and adds noise depending 
on the type of sensor failure to be simulated. These 
parameters can be modified at run time. 

3 Status Estimation Layer takes sensor readings and 
performs assessments using Temporal BNs to deliver 
clinical status estimates along with confidence 
estimates and sensor error alerts.  
In the following, we document the application of our 

software framework to two state-of-the-art problems 
within telemedicine: life-status estimation and 
acclimatization assessment. 

5 Life Status Estimation 
The life status estimation task involves making a 

simple determination as to whether or not a unit is alive on 
the basis of remote sensor data.   In this task, overcoming 
possible sensor failures and determining where such 
failures lie is far more difficult than the clinical 
assessment itself. 

5.1 Data 
There is a dearth of available data for fielded units 

with life-threatening medical conditions.  As a result, it 
was necessary to utilize a third-party simulation 
environment to generate a plausible data-stream.   

Following a survey and review, we selected 
Bodysim™ (Advanced Simulation Corporation, 
http://www.advsim.com) as the best candidate for our 
needs.  Bodysim™ provides a realistic sensor data stream 
at 165 Hz (165 measurements per second, not necessarily  



 in real time), although physiological signals provided 
by the package are not necessary those that would be  
expected from a deployed sensor array.  Furthermore, 
trauma simulation within Bodysim is not well supported.  
For example, severe bleeding could be simulated, but the 
wound site cannot be specified. Other stock trauma 
simulations provided with the Bodysim™ package could 
be interpreted as modeling some sort of battlefield injury, 
although not usually with the specificity we would have 
preferred.   

Despite its drawbacks, Bodysim™ was the best 
available simulation package for software developers at 
the time of this study. 

5.2 The Assessment Network 

In order to develop an assessment network for 
mortality assessment, knowledge elicitation sessions that 
were held with medical experts.   In these elicitation 
sessions, we sought to accumulate two types of 
information: 
• Physiological patterns indicating likely trauma, thus 

providing information for assessment. 
• Physiological patterns that were unlikely to appear, 

providing information for sensor validation.  
The elicited information was transcribed into a TBN 

which uses two sensors:  Systolic blood pressure, and 
pulse.  Figure 8 is a screenshot of the Mortality 
Assessment Network in its entirety.  The network covers 
three distinct time slices, and has two history that 
accumulate state in the network, and four input nodes  that 

 
Figure 7 Software Framework for SP & A 

Figure 8 The Assessment Network 
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are posted with trend and absolute evidence from the 
sensors.  The network spans a ninety seconds including 
history nodes, as this is a useful time-scale when trying to 
detect the physiological patterns that accompany serious 
trauma (discussed further below).  Output is read from the 
Confidence and Alive nodes. 

Figure 9 provides a conceptual breakdown of a single 
slice of the above network.  There are three “modules” 
within a time-slice.  These modules are : 1) the 
Physiological Module, which provides a confidence 
component according to how well observed metrics match 
known physiological (in this case, shock or normal 
physiological states) trends; 2) the Hardware Module, 
which provides a confidence given the operating 
parameters of the sensor hardware (the was maximum and 
minimum values allowed for each sensor); and 3) the 
Clinical Module, which provides an assessment of the 
subjects mortality on the basis of current readings from 
the sensor hardware.  Note that there is no direct 
connection between the physiological module and the 
clinical module in this network; thus, the goodness of fit 
between the known physiological patterns and the 
observed sensor readings contribute to the confidence in 
the hardware, but do not influence the assessment directly.  
This separation was useful in the development of this 
network, but is not a necessary feature. 

 
Figure 9: Conceptual Breakdown of Mortality 

Network 

The mortality assessment is made by detecting 
whether or not the monitored unit has both a pulse and 
viable blood pressure reading.  Illegal states (impossible 
values on either heart rate or blood pressure sensors) or 
states that are unlikely given the current stage of shock 
register an error at the “SenseErr” node, and this also 
reduces confidence in the hardware. 

As shown in Figure 8, the network has two outputs, a 
clinical assessment (the ”Alive node”), and a hardware 
confidence (the ”Confidence”).  These are to be 
interpreted as follows: 

Alive_0 – The current best estimate as to whether or 
not the unit is still alive.  In general, this value should be 
either “yes” or “no” (with some very small deviance from 
certainty).   Occasionally, when the clinical state is not 
recognizable (e.g. no blood pressure yet continued heart 
beat, which is possible in Bodysim™) each state will have 
a non-negligible probability.  This may be interpreted as 
an “indeterminate” state, in which an assessment is not 
really possible. 

Confidence_0 – The current estimate as to the 
reliability of the underlying hardware.  The interpretation 
of this node is fairly straightforward 

Ultimately, the output from these nodes would be used 
to drive a “user-friendly” layer that interprets the output so 
as to provide a well-tuned decision support tool.  
However, such a layer was not implemented in this 
prototype. 

Validation was performed with an SME, and although 
it was difficult to find subjects who were willing to 
provide data, our network performed very well for 
simulated data over a variety of sensor conditions.  More 
formal validation experiments are slated. 

6 Acclimatization Assessment 
The acclimitization assessment problem involves 

assessing a subject’s degree of adaptation to high-altitude 
conditions over time.  Unlike the life status estimation 
problem, the clinical assessment in the acclimatization 
problem is not well defined (more medical professionals 
will agree about a person’s life status than about degree of 
acclimatization).  

6.1 Data 
 The data used in this scenario was “real” data 

collected from a sensor harness that was originally 
designed to be used for monitoring humans at rest, and 
was consequently very noisy.  Finally, because the 
adaptation process spans several days (as opposed to the 
much shorter significant intervals in the trauma case 
detected by the life-status estimation network), two level 
of historical summarization were required in the 
assessment network to summarize data over longer 
periods of time. 

The data that served as the source of simulation for the 
acclimatization scenario was collected from actual 
military field tests at Pike’s peak in 2001.   Each data set 
provided roughly eight hours of data collected on days 
one, six, and twelve via a sensor harness.  The data 
contained two separate ECG traces from two separate 
leads (sampled every 4 ms), one respiration rate (RR) 
trace (sampled every 40 ms), and one SpO2 trace 
(sampled every 400ms).   All classes of data were subject 
to significant noise in the form of artifacts and drop-outs, 
although a proprietary algorithm was available from the 
manufacturer to extract heart-rate from ECG data which 
performed some error-correction.   

However, data from the RR sensor was too noisy to 
process directly, but there were no available algorithms 
for smoothing the data.   Figure 10a shows a 
representative sample of the respiration data (two minutes 
of data are shown).  People generally breathe at 
somewhere between ten and fourteen breaths per minute, 
thus the sample shown should have on the order of twenty 
to thirty complete waves.  

As it was difficult to distinguish actual peaks from 
artifactual data, we implemented a simple low-pass filter 
in an effort to screen out some of the noise.   The low-pass 
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 Figure 10: Respiration data a) Before smoothing; 

b) After smoothing c) After regression 

filter converts the signal to the time-domain (via FFT), 
discards all but N low-frequency components (where N is 
determined at compile time), and then converts these 

components back to the time domain (via iFFT)  to obtain 
the smoothed waveform.   Figure 10b shows the result of 
applying this filter to the raw data in  Figure 10a. 

After initial smoothing, a linear regression was run 
(with a window size chosen at compile time) to identify 
significant inflection points.  This, in effect, screens out 
peaks that are “small” where small is a function of 
amplitude and wavelength, as well as the size of the 
window.  Half the number of zero crossings (the number 
of complete waves) in the minute preceding the current 
time is thus the respiration rate in breaths per minute.  
This procedure was applied at runtime, and thus no 
preprocessing of the respiration data was necessary.   
Figure 10c shows the result of this procedure (note, the 
inverse of the slope is shown here to make the zero 
crossings more obvious.   

6.2 The Assessment network 
The acclimatization network (shown in Figure 11) is 

designed to produce assessments about the monitored 
unit’s degree of adaptation to high altitude conditions over 
a series of days, as opposed to the mortality assessment, 
which was possible to do over a series of minutes. This 
required modifications to be made the underlying 
temporal belief network software framework, as caching 
12 days (or even a single day’s worth) of data from a data 
stream that was sampled at the sub-second time scale 
creates tractability problems. 

To address this difficulty, the temporal framework was 
augmented with summary nodes, which are similar to 
history nodes in that they capture the beliefs of the 
network at given time, but are updated with coarser 
temporal granularity than the other nodes.  In our case, the 
summary nodes are only updated when the next available 
day’s worth of data is observed.  Thus, there are two 
levels of historical summarization present within the 
Acclimatization Network. 

 Figure 12 provides a conceptual breakdown of the 
“Current Time” portion of the Acclimatization network.  
The breakdown is somewhat different than in the case of 
the mortality estimation network, as the clinical module in 
this case is entirely subsumed by the physiological 

 

Figure 11 The Acclimatization Network 



module.  In this case, the physiological characteristics 
given a degree of adaptation, the altitude the monitored 
unit is stationed at, and the units’ degree of activity are 
captured in the probability tables of these nodes.  The 
clinical module is actually implicit in these nodes, as the 
propagation of evidence through the network will cause 
the “Adapted_0” node to be updated according to 
evidence that is posted at the input nodes, and the degree 
of adaptation during previous days.   

 
Figure 12: Conceptual Breakdown of the 

Acclimatization Network 

The hardware module models both unlikely states in 
the individual sensors (extreme values that are not 
possible) and unlikely states given the assumed 
physiological state.  Note the causal direction of the links 
is from the consistency nodes (CSat_0, CHB_0, CRR_0), 
to the three input nodes (ExpSat_0, ExpHB_0, ExpRR_0).  
Thus, the probability tables at the input nodes are 
conditioned upon the state of the of the consistency nodes.  
Because the reasoning in belief networks is essentially 
directionless, sensor values which cause states at the input 
nodes that fall outside the values that could be expected if 
the sensors are operating correctly, the consistency nodes 
will register the potential sensor failure after evidence is 
propagated. 

As in the case of the mortality network, validation was 
performed with the assistance of medical subject matter 
experts.  In this informal validation, the network was 
observed to provide clinically plausible assessments, and 
was able to identify locations in the data logs which were 
very likely to be erroneous.  More formal validation 
studies are planned.  

7 Conclusions 
We have presented a general modeling methodology 

for SP&A, with application to two domains in the field of 
telemedicine. The assessment algorithms provided 
probabilistic status estimates, along with probabilistic 
hardware status estimates (i.e. probability of a sensor 
reading being correct). These probabilities were computed 
using temporal TBN models.  

Our methodology is modeled after common sense 
human reasoning.  This methodology involves 
establishing a plausible probability space and encoding 
this space into a temporal belief network.  In summary, 
our methodology is as follows: 1) establish expected 
correlation between individual physiological parameters 
and environmental conditions; 2) establish confidences 
and operating parameters for a variety of sensors; 3) 
combine these in modular fashion into a single temporal 
belief network.  

We plan to extend and refine the PULSE prototype 
with additional and more refined sensor models, and more 
complete physiological models.  Ultimately, we hope to 
accumulate a library of data models for various 
physiological variables, which can be rapidly combined 
using a framework like the one discussed here into custom 
built SP&A solutions for a variety of telemedicine 
applications. 
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