
Modelling, Simulation and Estimation of Situation Histori es

Daniel McMichael, Geoff Jarrad, Simon Williams and Michael Kennett
CSIRO Information and Communications Technology Centre

Locked Bag 2
Glen Osmond,

South Australia 5064
Australia.

{Daniel.McMichael, Geoff.Jarrad, Simon.Williams,
Michael.Kennett}@csiro.au

Abstract – Air situation histories are represented bysequence
set trees. These structures provide the representational power to
model a rich variety of situations with only a small number of
rules. The model’s generative power makes it a candidate for
use in Monte-Carlo testing of planning and surveillance regimes
in the air defence domain.

Sequence sets are sets of sequences that can be constructed
recursively into trees. Sequences are represented by sequence
grammar trees and the sequences are themselves associated by
set grammar trees. These structures are able to provide a detailed
hierarchial model of the temporal evolution of systems of targets,
their force structure and intent. Red and blue force components
and their interactions are represented. Bayesian probabilities can
be associated with the sequence set trees and their component se-
quence sets, and this facilitates robust algorithms for simulating
situations and inferring them from data. A sequence set parser,
based on the pivot table method, is presented.

Keywords: Situation assessment refinement, air picture, se-
quence set, probabilistic, situation simulation, situation inference,
situation analysis.

1 Introduction

A situation assessmentis an account of the salient features
of the state of a system containing a number of components
— such as a military battle or a patient’s health. Conven-
tionally, a situation assessment is a freeze-frame pictureof
the system. While such assessments provide valuable in-
formation, they neither model the past state, the processes
that have generated the current state, nor do they provide a
direct method for extrapolation into the future. This paper
sets out a theory and corresponding algorithms required to
estimate situation models that account for the events within
a system over a period of time and predict its future. It is
focused on the requirements of military airborne situation
assessment, although its use is by no means restricted to
this domain.

The extended situation model we propose covers a finite
duration. At any instant within its life, the state of the
situation can be evaluated — to give a conventional freeze-
frame situation. The extended situation provides a hierar-
chical representation of the assets and their force structures
as they evolve over time.

Our aim is threefold: firstly, to create a rich representa-
tion for such situations; secondly, to provide a sampling

scheme to enable whole situations to be simulated from
high-level summary descriptions; and thirdly, to develop
algorithms for extracting situation models from estimated
track data.

The paper briefly examines relevant previous work, and
in Section 2 presents a scenario referred to in the rest of the
paper. Section 3 introduces sequence sets and sequence set
trees and describes situation objects, the nodes of situation
trees. A graphical notation for situation trees is introduced
in Section 4 within the context of the scenario. Set and
sequence grammars for modelling the internals of sequence
sets are described in Section 5. Probabilistic models for
sequence set trees and the grammar trees they comprise are
developed in Section 6. These are used to create simula-
tions (Section 7) and to extract situations from track data
(Section 8).

1.1 Previous work

The term, situation assessment, derives from military par-
lance, and refers to a succinct summary of the state of af-
fairs needed to take a decision. Whilesituation theory[1]
was originally created for an entirely different purpose: the
modelling of context in semantics derived from natural lan-
guage, it has been successfully applied in military situa-
tion assessment. In situation theory, logic statements are
restricted by a situation. So, for example, the statement
“Frederick is bald” is restricted by the situation that “Fred-
erick lives at No. 144b, Acacia Gardens, Port Moresby”
— the first statement does not apply to all people called
Frederick, only those that live at that address! Lambert
[2] has applied this idea of situation in his definition of an
event,which for him is collection of statements about one
or more entities that may be anchored to a location and a
time. He applies the term scenario to a collection of con-
sistent events that describe a real-world situation. For him,
situations do not exist beyond the relationships and identi-
fied roles within them. Information about the situation is
extracted by using a deductive inference engine to answer
queries.

Laskey and Mahoney [3] have regarded situation analy-
sis as primarily a problem of inference under uncertainty, in
which an agent is given probabilistic facts that it then com-
bines in a Bayesian network to provide inferences about

unobserved variables. One of the key insights of situa-
tion modelling is the need foragency— the attachment of
knowledge to decision-making agents, rather than to an all-
encompassing knowledge base. Incorporation of agency
allows the actions of actors within the situation to be antic-
ipated with greater accuracy.

The locality of knowledge can be partially incorporated
into Lambert’s method, via hisscenarioconstruct, which
only absorbs information available from that set of events
that forms the scenario. In our proposed situation model
we attach knowledge to individual agents.

2 A Situation Scenario

To identify some of the issues involved in representing situ-
ations, in this section we consider a scenario and show how
it can be represented in terms of both force and temporal
decompositions. The scenario concerns a raid by the Blue
Force over a stretch of sea on a costal target located on land
controlled by the Red Force.

Sea

A

B

αααα

ββββ

C

C'

D2 fighter-bombers

4 fighters

500 km

feint attack

 RED

BLUE

Fig. 1: A scenario showing a two-formation attack by the
blue force on the a red target at C.

Operation “Sneak Attack”. (Fig. 1) The Blue Force
attacks the red target over a stretch of water. The Blue
Force comprises two formationsα andβ. Formationα de-
parts from base A, and consists of four fighters that can have
ground attack missile capability. However, on this mission,
the missiles are not fitted – to increase manoeuvrability and
range. This formation operates at high level and carries out
a feint attack, intending to draw off enemy defences.

The other formationβ consists of two fighter-bombers,
and departs base B and heads for the target C indirectly via
way-point D. This force pursues a stand-off attack on C
with two smart bombs released from one of the aircraft.
This force approaches stealthily, flies low, below enemy
ground-based radar and is intended only to become visible
to the enemy shortly before the attack.

The force and temporal structures of the mission are
shown in Figs 2 and 3. Fig. 2 shows the two formations,
the aircraft comprising them and the bombs on the attack
aircraft. After the attack the bombs are no longer present.
The temporal model for theα formation shows it decom-
posed in two levels; the full lines indicate membership and

the dotted lines arecontinuity linksthat show the temporal
sequence.

Before the Attack

After the Attack

Force

Formationα Formationβ

α1 α4α3α2

b1

β1 β2

b2

Force

Formationα Formationβ

α1 α4α3α2 β1 β2

Fig. 2: Force models for the scenario (above) both before
and after the attack. The force comprises two formations
α and β that respectively comprise four and two aircraft.
One of the aircraft in theβ formation is equipped with two
smart bombsb1 and b2, which are dropped during the at-
tack.

Formationα Feint Attack

Execute Feint AttackAssemble Disassemble

Take-off
Fly to
Ass'y
point

Form-up SLF Turn SLF Form-up
to land Land

Fig. 3: Temporal model for theα formation.

While each of these models is a useful presentation of
events, they are incomplete; to represent situations properly
a model that jointly represents both force decomposition
and temporal structure is required. We now turn to the
fundamental mathematical structure required to build such
models.

3 Sequence Sets
In this section we present a recurrent model structure based
on thesequence setprimitive, and show how sequence sets
can be combined to createsequence set treesthat can rep-
resent a wide class of situations found in air warfare.

In target tracking, an incremental temporal model com-
ponent is applied recursively to represent the evolution of
each track. Analogously, in this approach to situation anal-
ysis, a force-temporal model component is applied recur-
rently to represent situations. It must be capable of recur-
rence both temporally and force-structurally, so that evolv-
ing force structure hierarchies can be represented. The sim-
plest mathematical structure that provides these capabilities
is thesequence set.

A sequence setσ is a set ofE sequences. Ife ∈
{1, ..., E}, then letNe be the number of stages in theeth

sequence. The sequence set also contains a set ofQ pa-
rametersθ = {θq}

Q

q=1. The sequence of elemente is

σ̄e , 〈σei〉
Ne

i=1, A sequence set therefore takes the form:

σ =

{

{

〈σei〉
Ne

i=1

}E

e=1
, θ

}

=
{

{σ̄e}
E

e=1 , θ
}

; (1)

where the elementsσei may themselves contain parameters.
Sequence sets can be applied recursively, such that a

sequence set can be a member of a higher sequence set.
Repeated application of such substitutions generates ase-
quence set tree(Fig. 4). Sequence set trees can represent
the evolution of complicated force structures over time.

Fig. 4: A sequence set tree: the root node has three se-
quences each of four stages; two of its stages are themselves
sequence sets.

Sequence sets can be applied to represent situations by
associating each node in the sequence set (asituation ob-
ject) with a set of assets for an interval of time. In our
implementation, the lowest level situation objects represent
targettrajectory segments. A trajectory segment is a kine-
matically coherent section of a target’s trajectory history,
such as a period of straight level flight (SLF) or a turn.
Higher level situation objects represent aggregations of tar-
gets, such as multi-aircraft formations (e.g.α and β in
Sneak Attack) for longer periods of time. An example
of the stages of such an object is the Assemble-Execute-
Disassemble temporal sequence of theα-formation’s his-
tory shown in Fig. 3.

3.1 Situation objects

In the application of sequence set trees to situation mod-
elling, each node of the tree represents the combined activ-
ity of the assets that belong to it for its duration. The nodes
of the sequence set tree are termed situation objects, and
each object includes the following data structures:
Amongst itstatevariables are:

Identifier a unique name for the current object in the situ-
ation tree;

Type the current object’s type, aircraft, formation, group
etc.

Begin and End Time the time span of the object’s exis-
tence;

Intent friendly/hostile defensive/offensive;
Kinematics a summary of the object’s kinematics;

Assets the assets (i.e. aircraft) belonging to it, and their
states;

Task a high level description of the goal that the object is
attempting to achieve;

Tactic the object’s method for carrying out its task.

A set of links to its:

Parent The object immediately above the current object in
the situation tree;

PredecessorsThe objects preceding the current object that
haveassetsin common with the current object.

4 Situation Trees

The recurrent application of sequence sets, when applied to
model a situation, generatessituation trees, which provide
the hierarchical force-temporal situation model we seek.
We now examine how the operation Sneak Attack of Sec-
tion 2 can be represented using a situation tree. To make
them visually comprehensible, situation trees are flattened
on to two dimensions. In situation tree diagrams, force and
temporal structures are expanded in alternate layers down
the tree. The rules for constructing these diagrams are:

1. Situation trees comprise nodes for stages (S, 2), ob-
jects (O,©) and track segments (T,△);

2. The root of a situation tree is a stage node (convention-
ally at the top of the diagram);

3. Structural dependencies are shown by full links;
4. Structural dependency links can pass down the tree al-

ternately from stage node to object node to stage node,
and so on;

5. Continuity links, shown by dashed arrows, are induced
when the assets of an object are inherited by a new
object;

6. The leaf nodes of the tree are track segments.
A portion of the situation tree for Operation Sneak Attack
is shown in Figure 5, which includes both continuity and
dependency links. The overall situation is labelledS and
below it is the Blue Force object nodeBF (only Blue Force
activity is shown on this diagram). Operation Sneak Attack
(SA) is a stage in the activity of the Blue Force and is its
child. To execute Operation Sneak Attack, the Blue Force
deploys two formationsα andβ. These are the object child
nodes ofSA. Formationα is to execute Mission Feint At-
tack using a number of Blue Force fighter jets flying in for-
mation. Mission Feint Attack consists of three high-level
stages: Assemble (As), Execute Feint Attack (ExFA) and
Disassemble (DAs). Suppose that when generating the sit-
uation tree, the Simulator made the stochastic decision that
two fighter jetsf1 andf2 will be used for the mission. In
this modified scenario,f1 andf2 were based in different
locations.

Before the fighter jets can fly in a formation, they must
take-off (T) from their respective bases and advance (A) to
a meeting point. So to Execute Feint Attack (ExFA), α
must first execute the Assemble stage (As). This is the first
child stage node ofα. Whereasα executesAs, its members
f1 andf2 executeT andA separately because they have yet
to assemble. WhenT andA have been completed for both
fighter jets, the higher-level stageAs is also complete.

The assembly off1 andf2 represent a temporal change
in the organisational structure of the situation. Now that the
fighter jets are flying together in formationα′, they are a
single organisation represented in the situation tree by the
object nodeα′. So it is α′, and not the individual fight-
ers, that performs the Execute Feint Attack (ExFA) stage .
ExFA comprises of the stages advance (A) and retreat (R).
Since bothA andR are basic stages, they cannot be ex-
panded into lower level stages and are directly passed down
to f1 andf2. Note however, thatf1 andf2 have slightly
different versions of the stagesA andR. Different parame-
ters such as the coordinates of the spatial end-point prevent
the two fighter jets from travelling the exact same path.

After completingExFA, the fighter jets disassemble
(DAs) and return to their respective bases.

S Situation

BF

As

SA Operation Sneak Attack

β

Assemble

f1 f2

ExFA

T A T A

α

α'

A

f2f1

A A

R

f1 f2

R R

Blue Force
.

.
.

Execute Feint
Attack

DAs

R L R L

f1 f2

Disassemble

T11 T12 T21 T22

T13 T23 T14 T24

T15 T16 T25 T26

Fig. 5: A portion of the situation tree for the example intro-
duced in Section 2, and modelled in Section 3. Continuity
dependency links are shown.

5 Grammar for Sequence Sets

We have seen in Sections 2 and 3 that situation trees can
be constructed recursively from sequence sets. We now
consider the finer grained structures within sequence sets,
and show that grammar is an effective tool for modelling
both time sequences and force membership.

The expressive power of language follows from its com-
positionality — it comprises items that can be composed
together in a very large number of ways. The grammar
of the language is set of syntactical rules for composing
word sequences. To provide a similarly versatile model
for sequence set generation, we define two categorial gram-
mars [4], one for representing stage sequences and another

for aggregating sequences into sequence sets. For the for-
mer we define a sequence-grammar and for the latter, a set-
grammar. Finally we then show that an entire sequence
set can be represented using a unifiedsequence set gram-
mar. The sequence set (1) is refined into a functional form
in which grammatical structures replace the simple set op-
erators as follows:

σ = T
(

{σ̄e}
E

e=1 , θ̃
)

(2)

= T

(

{

Se

(

〈σei〉
Ne

i=1 , θe

)}E

e=1
, θ̃

)

, (3)

where T
(

{ze}
E

e=1 , θ
)

is the set grammar tree gener-

ated with parametersθT over the leaf nodes{ze}
E

e=1.

Se

(

〈σei〉
Ne

i=1 , θe

)

is the sequence grammar tree for theeth

sequencēσe = 〈σei〉
Ne

i=1, generated with parametersθe over
the leaf nodes〈σei〉

Ne

i=1. The parametersθ are decomposed

asθ =
{

{θe}
E

e=1 , θ̃
}

. We begin by defining the proba-

bilistic combinatory categorial grammar(CCG) [5] for en-
coding the set and sequence grammar trees.

A probabilistic CCG comprises:

• N, a set of node identifiers
{

n1, . . . n|N|

}

, each iden-
tifying a set of parametersP which includes acate-
gory c and the combinatork that formed the node, if
present, i.e.n → P ; P = {c, k, . . .};

• K, a set of combinators
{

k1, . . . k|K|

}

defining
m-ary rules1 for combining nodes of the form
(c1, . . . , cm) ⇒k c′,

• R, a set of replacement rules
{

r1, . . . r|R|

}

defining
unary rules on the parameters of the formP ⇒r P ′,

• Pt, a function assigning a probability to each terminal
nodeP (Pn), and

• Pn, a function assigning a probability to
each non-terminal node, given its parents:
P (Pn | Pn1

, . . . ,Pnm
)

Applying this definition generates the grammar treesT
andS.

The set grammar comprises the combinatorsF for func-
tional application,M for modification and& for conjunc-
tion. In function application, one category (the functor)
acts on another (the argument) to derive a new category,
while in modification the functor merely modifies the ar-
gument. Conjunction combines to similar entities. For
example, if one node has categoryFo | A, whereFo =
‘formation’ andA = ‘aircraft’, the statement that the for-
mation can incorporate an aircraft into itself and yet remain
a formation is writtenFo | A · A ⇒F Fo, and can be
expressed graphically in the followingset grammar tree

Fo, F
Fo | A A

.

1rules that can accept up tom nodes as input.

The functor categoryFo | A is on the left; it signifies that
under functional application it can absorb an ‘A’ to produce
an Fo. This relationship implies that a formation can be
represented by eitherFo or Fo | A.

Sequence grammar trees (parse trees) are similar, but
here order is important; so the combinatorsF andM are
prefixed with direction indicators> and <. For exam-
ple, the sequence set with root ‘Operation Sneak Attack’
in Fig. 5 contains the elementsα andβ, each with its own
sequence. The sequence under theα formation ‘Assemble
/ Execute Feint Attack / Disassemble’ can be written as the
sequence grammar tree:

EFA, Fa,>F
EFA, (Fa/D),<F

Ass’le,A EFA, (Fa/D)\A Dis’le, D
.

where:
Assemble→ A,

Execute Feint Attack (EFA)→ (Fa/D)\A,

Disassemble→ D,

This tree has been annotated withheads(e.g. “EFA”,
“Ass’le”) for greater clarity. A set grammar tree combining
summary sequence trees for forcesα andβ to form the se-
quence set for the operation (marked ‘SA’ in Fig. 5) yields
the followingsequence set grammar tree:

Attack,At, F
EFA, Fa,>F Attack,At | Fa

etc... etc...
,

where ‘etc.’ expands into the relevant sequence tree.
Sequence sets constructed in this way provide a rich

model for the evolution of situation components. The use
of grammar also leads to robust computational mechanisms
for extracting situations using parsing algorithms (Section
8).

6 Probabilistic models

Within the framework we have set out, the goal of situation
inference is the identification of a credible portfolio of pos-
sible situation trees that fit a set of estimated tracks. We
pursue a Bayesian approach, in which a probability is asso-
ciated with a situation tree. That probability is the product
of a set of factors, one for each sequence set.

From the definition of our CCG (Section 5), the proba-
bility of a grammar treeG is

P (G) =
∏

i∈N(G)

P
(

Pi | {Pj}j∈A(G,i)

)

, (4)

whereG is the grammar tree,N (G) is the set of nodes of
treeG, i is an identifier for the nodes in the tree, andA (G, i)
are the direct predecessors of nodei onG. A sequence set
σ (3) is characterised by the arguments and parameter set

{

{

〈σei〉
Ne

i=1

}E

e=1
, θ

}

, (5)

and the conditional probability of its parameters is

P

(

θ |
{

〈θei〉
Ne

i=1

}E

e=1

)

=
∏

i∈H(T)

P
(

Pi | {Pj}j∈A(T ,i)

)

×
∏

e∈L(T)

∏

k∈H(Se)

P
(

Pe | {Pej}j∈A(Se,k)

)

×
∏

i∈L(Se)

P (Pei | θei)

, (6)

whereL (T) is the set of leaf nodes ofT , andH (T) is the
set of higher, non-leaf nodes ofT . The probability of the
entire situation treeΣ is therefore

P (Θ | Z) =
∏

n∈H(Σ)

P
(

θn | {θj}j∈A(σn)

)

×
∏

n∈L(Σ)

P (θn | zn) , (7)

whereΘ is set of all the parameters of the tree,zn is a
set of parameters that summarise thenth track segment,
andZ = {zn}n∈H(Σ). Continuity dependences between
nodes hosting assets at consecutive times can be incorpo-
rated as additional conditions [6]. While it is mathemati-
cally possible to integrate situation extraction with tracking
algorithms, this step is not contemplated within the current
project.

6.1 Conditional probability factorisation
We now propose a more detailed conditional structure for
both set and sequence trees within a sequence set. We
present the basis for the factorisation, and then provide can-
didate factorisations for set and sequence grammar trees in
situation assessment.

Let the variables from each of the predecessors of a given
node in a grammar tree be assembled into sets of the same
type. Let the set of predecessor conditions bey. There are
n conditioning variables drawn from each predecessor, and
there arem predecessors; so

y = {yi}
n
i=1 where yi = {yij}

m

j=1 . (8)

Let y be covered by an arbitrary set of mutually exclusive
subsets, so thaty =

⋃

j Vj (y), and let
{

V̄j (y)
}

j
be an

arbitrary conjugate set of subsets subject to

Vj (y) ∩ V̄j (y) = ∅ and Vj (y) ∪ V̄j (y) ⊆ y. (9)

Now let the distribution of the conditions given the combi-
natorP (y | k) have the independence structure

P (y | k) =
∏

j

P
(

Vj (y) | V̄j (y) , k
)

. (10)

If y′ is the set of variables of the derived node correspond-
ing toy, it is possible to show thatP (k, y′ | y) factorises as
follows:

P (k, y′ | y) ∝ P (k)
∏

j

P
(

k | Vj (y) , V̄j (y)
)

P
(

k | V̄j (y)
)

× δ (Vj (y′) − fj (Vj (y′) ; k)) ; (11)

Category (C)

Kinematics (K)

Feature kinematics (F)

tags (T) Object (O)

Local Object (L)Asset (A)

Model parameters (M)
(link to all other nodes

except Asset)

Fig. 6: Probabilistic dependencies of groups of situation
object variables.

wherefj (·; k) is a function, andδ (·) ∈ {0, 1} is a delta
function.

In situation modelling the variables can be grouped as
shown in Fig. 6. The conditional distribution of these vari-
able groups is

P (F, T, K, M, C, O, A, k | F, T, K, M, C, O, A, Z)

= P (F, k | F , K, T , M) P (T | k, T , C, K, O, M)

× P (C | k, C, K, T, M) P (O | O, T, C, M) P (A | Z)

× P (L | A, O, M) P (K | K, C, M), (12)

where bold face indicates variables from the predecessor
nodes and light face indicates derived node variables.

The roles of each non-selfexplanatory group are as fol-
lows: thefeature kinematicsgroup hosts filters for detect-
ing such manoeuvres as combat air patrols; theassetgroup
provides information extracted directly from the tracks cov-
ered by the object; themodel parametersare house-keeping
variables such asleveland the object’s asset list; while the
local objectgroup fuses information from the object and
asset groups.

7 Simulating a Situation

The purpose of a situation simulator is to instantiate a situ-
ation: creating all the required nodes between the root and
the track segments and generating the tracks.

The simulator comprises asituation generatorand a
track generator. The situation generator creates the situ-
ation model down as far as track segment level. It pro-
vides a script (an elaborate form of flight history) to the
track generator, which generates tracks containing such re-
alistic characteristics as dropouts, reappearances, splitting
and merging.

7.1 Situation generation

The richness of the situation model structure allows it to
generate a very large variety of simulated situations by as-
sembling its components in different ways. The simulator
samples the probabilistic model (Section 6) over time and
from top to bottom down the situation tree. Sampling ac-
curacy can be improved by first using an approximate top-
down model to generate a set of samples and then selecting
one by importance sampling of that set using an accurate
bottom-up probabilistic model. The situation generator

Situation Generator

Track Generator

Situation
Inference
Module
(SIM)

Operator
GUI

Scenario Specification

Database of:

situation
components

and
situation code

fragments
and

dynamic
characteristics

and
sensor/tracker
characteristics

Fighter GUIs
Fighter
GUIs

Annotated Flight Plans

Tracks

reference
situation

Tracks

Fig. 7: The flow of information through the Simulator start-
ing with a situation specification defining the top-level ob-
ject in the situation, and ending with a collection of track
reports transmitted to the GUI’s and the Situation Inference
Module. The database is a store of interchangeable model
fragments needed to flexibly construct the detail of the situ-
ation from the specification.

comprises data, a small tree-generating kernel and a set of
code segments that encode tactics that situation objects can
implement to generate further objects. A situation object is
instantiated by:

1. Copying down the elements of itsstateavailable from
its parent;

2. Preparing to create the next level in the sequence set
for which the current node will be the parent:

(a) Identifying thetactic that will be used to achieve
thetask;

(b) Dividing theassetsinto teams that can accom-
plish the various parts of thetactic;

(c) Creating thestagesby which each of theteams
will contribute to the accomplishment of thetac-
tic.

3. Instantiating all the child objects that start when it
does.

Situation objects are created at their begin times and con-
cluded at their scheduled end times, or earlier, if they are
interrupted by events such as a red force incursion, or loss
of an asset.

7.2 Track generation

Tracks are simulated by constructing the track state se-
quences underlying each track segment. Track segments
represent object kinematics with cubic splines. Spline pa-
rameters are calculated for given endpoints and end times,
and when the final time is unknown. Smooth target tra-
jectories are estimated from a list of way points, and for

Fig. 8: A screen shot of the GUI displaying the dynamic
simulation of an example scenario at timet = 2400. This
shows the red force fighter being lured off to the north by
a feint attack from the blue force fighters, whilst the blue
force bombers approach from the east to attack the red force
artillary dump. Also shown for the sake of demonstration is
a civilian jet aircraft coming from the west.

modelling simple target manoeuvres such as climbs, turns
and changes of speed.

8 Situation Extraction
This section shows how situation extraction is realised by
application of a hierarchical multisequence parsing process
we termsequence set parsing. Parsing is the estimation
of the structure of a grammar tree from partial informa-
tion about the leaf nodes only. Conventionally, parsing is
applied to sequences, but we generalise it to include sets.
From there, the construction of sequence set parsing algo-
rithms requires relatively minor additions. For simplicity
of presentation, we initially only consider batch evaluation.

A key idea in scalable parsing algorithms is the use of
parse treeforeststo enable the evaluation of the probabili-
ties of large number of parse trees efficiently. A forest is
an interwoven set of parse trees, such that all the common
nodes are shared. We show thatthe sameforest structure
can be used in sequence set parsers as in standard sequence
parsers.

This section first presents thepivot table algorithm, a
high-performance sequence parsing algorithm, and then
shows how it can be adapted to set parsing. These al-
gorithms can either be used to find the highest probabil-
ity parses or be detuned to run faster. The trade-off be-
tween increased compute speed and decreased parse quality
is favourable.

8.1 The pivot table algorithm

Let the sequence of tokens be{tn}
N

n=1. Let a parse tree
S covering tokenstn1

through totn2
have the properties:

begin(S) = n1 and end(S) = n2. Let the intertoken
position labelledn be the position after tokentn (i.e. the
position before the first token isn = 0).

In the pivot table algorithm [7] the unary trees provided
by the token preprocessor are assembled into a list (thepivot

table) ordered by probability, with the most probable tree
at the bottom. The bottom (most probable) tree is then
copied from the list and combinations are formed with the
trees available either side of it. These derived trees are
inserted into the table such that their probability is lower
than or equal to the entry below it and higher than the entry
above it. The next tree up is copied out of the list, and the
process repeated. The point from which a tree is copied
out is known as thepivot point. Going up the pivot table,
when a tree that spans the entire token sequence is reached,
it is necessarily the most probable parse tree.

The reason this algorithm works is that derived trees al-
ways have equal or lower probability than the trees that
were combined to form them – because their probability
is a product of those of their predecessors multiplied by the
probability of combination. Thus they are inserted higher
up the pivot table than the pivot point. So the first ac-
ceptable sequence-spanning terminating tree is reached will
have highest probability. This algorithm obtains a parse
from the equivalence class of parses with highest probabil-
ity.

Formal Description. Let the pivot table beT. Let the
tree at the bottom of the table beT1, and the pivot point
bep. Left and right tree lists{Ln}

N
n=1 and{Rn}

N
n=1 are

maintained for each intertoken point. The parsing process
is exhaustive, and the extracted tree is the one with the high-
est probability with category belonging to the class of ac-
ceptable root categoriesR, viz:

∀ n∈ {1, . . . , N} initialiseLn andRn with ...
...the unary trees (track segments)

Put all trees in pivot tableT, the most probable lowest (T1)
Initialise pivot pointp = 1
While category(Tp) /∈ R ORTp does not cover ...

...the block of input tokens:
For (ℓ, r) ∈ Lbegin(Tp) × Tp ∪ Tp × Rend(Tp)

Attempt to combine treesℓ andr, yielding the setT ′

MergeT
′ into T such thatP (Ti)≤ P (Tj)⇔ i ≤ j

p = p + 1
To find the best parse:

backtrack down through the parse tree forest from
...root(Tp) to extract the entire treeTp .

8.2 A pivot table algorithm for sets

There is a natural progression from sequence parsing to set
parsing via the concept ofcombinatory context. A tree cov-
ering a sequence of tokens has a left-combinatory context
equal to those trees that end directly before it starts and a
right-combinatory context equal to those trees that begin di-
rectly after it ends. For sets, there is no notion of order, and
so for each tree, there is only one combinatory context, and
defining it is a matter of choice. Let the set data at hand be
D = {dj}

J

j=1. Let datumdj have a set of treesT = {Ti}
coveringit (i.e. havingdj as a leaf node). Let the set of
trees that can combine with a treeT be given by thecombi-
natory context function, K (T), where the treeT subsumes
its parameters (θ). Theforest of treesconcept also applies
in the set parsing domain, as trees can be shared by multiple
higher-level trees.

Formal Definition. Let the pivot table beT. Let the
tree at the bottom of the table beT1, and the pivot point
bep, and the combinatory context function beK (Ti). Let
there ben set elements to parse. The pivot table set parsing
algorithm is set out below.

Initialise pivot table with the unary trees (track segments)
Sort pivot tableT, ordered with the most probable lowest (T1)
Initialise pivot pointp = 1
While Tp 6= root orTpdoes not cover the input tokens:

For (t1, t2) ∈ Tp × K (Ti)
Attempt to combine treest1andt2, yielding theT ′

MergeT
′into T such thatP (Ti) ≤ P (Tj) ⇔ i ≤ j

...P (Ti) ≤ P (Tj) ⇔ i ≤ j
p = p + 1

To find the best parse:
backtrack down through the parse tree forest ...

..from root(Tp)to extract the entire treeTp

8.3 Sequence set parsing

Following the structure of the sequence set conditional
probability (6) and of the situation tree likelihood (7), situa-
tion tree parsing requires the construction of alternate layers
of linked sequence and set parse trees from the leaf nodes
up (Fig. 9).

Situation Tree

Time

Force
Structure

Building
from below

Fig. 9:A diagramatic view of a situation tree showing alter-
nate layers of set parse trees (determining force structure)
and sequence parse trees (determining temporal structure).

Sequence sets can be parsed using the same tree forest
structure as for sets and sequences, because they too are
trees. Sequences of track segments from all the tracks are
fed to the parser in a batch. Each sequence is identified by
its track numberν ∈ ν. Each tree in the forest is assigned
a level ℓ ∈ {1, . . . , L} that determines with which other
trees it can combine. Parsing operates by sharing time be-
tween sequence parsing and set parsing at different levels
of the sequence set tree forest. The algorithm first parses
track segment sequences to form a portfolio of sequence
trees. The root node of each tree is assigned a level dur-
ing the combination process. The algorithm aims to find a
set of high probability situation trees that cover all the track
segments; it is tabulated below.

Let any situation treeΣ covering all track segments of
all tracks satisfyΣ ∈ C, and letP be the portfolio of ex-
tracted situation trees covering all the track segments of all
the tracks.

Initiate separate sequence pivot tables for the track ...
...segments from each track:{Tν}ν∈V

Create pivot tables for each level:Sℓ ∀ ℓ ∈{1, . . . , L}
InitiateS1 to contain all track segments
Assign all track segments to level 1:ℓ (Tν)= 1 ∀ ν ∈ V
RepeatK times:

For ℓ ∈ {1, . . . , L} :
Forν ∈ V :

sequence parseTν to formN (ℓ) new trees
assign a levelℓ to each new tree
copy a reference from each new tree in toSℓ

set parseSℓ to formM (ℓ) new trees
assign a levelℓ to each new tree

for each new set of covered tracks:
create a new sequence pivot table

add new trees into appropriateTν

ForΣ ∈ Sℓ∩C : place reference toC in P

The best situation tree isΣbest= argmaxΣ∈P {P (Σ | Z)}
Extract best tree by backtracking down through the ...

...extracted situation tree forest from tree root.

9 Conclusion
The work described in this paper has set out an approach
to air situation assessment that is fully consistent with the
rigor and clarity of modern tracking algorithms. The rep-
resentation it describes summarises systems of tracks us-
ing discrete grammars to represent higher-level behaviours.
Simulation is implemented by sampling, and the estimation
process is an extension of existing approaches to parsing.

Acknowledgements

The authors gratefully acknowledge the support of Boeing
in this work, particularly of Bob Lobbia and Ken Manus.
Very many thanks also to John Colton of CSIRO.

References
[1] J. Barwise and J. Perry.Situations and Attitudes. MIT Press,

Cambridge, Masssachusetts, 1983.

[2] Dale A Lambert. Assessing situations. In Robin Evans, Lang
White, Daniel McMichael, and Len Sciacca, editors,Proceed-
ings of Information Decision and Control 99, pages 503–508,
Adelaide, Australia, February 1999. Institute of Electrical and
Electronic Engineers, Inc.

[3] K.B. Laskey and S.M. Mahoney. Knowledge and data fusion
in probabilistic networks. 2003.

[4] Geoff Jarrad, Simon Williams, and Daniel McMichael. A
framework for total parsing. Technical Report 03/10, CSIRO
Mathematical and Information Sciences, Adelaide, Australia,
January 2003.

[5] M. Steedman.The Syntactic Process. MIT Press, 2000.

[6] Daniel McMichael, Geoff Jarrad, Simon Williams, and Mark
Cheung. Situation inference I: Extraction. Technical Report
03/08, CSIRO Mathematical and Information Sciences, Ade-
laide, Australia, January 2003.

[7] T. Matsumoto, D.M.W Powers, and G. Jarrad. Application of
search algorithms to natural language processing. InProc.
Australasian Language Technology Workshop, Melbourne,
December 2003.

