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Abstract – We consider the problem of determining sen-
sor trajectories in the bearings-only tracking of an uncer-
tain target. This work differs from previous research in that
we allow the target dynamics to be both uncertain and ran-
dom; and also consider multi-sensor scenarios. The basis
of our technique is to control a measure of estimation error
based on the Posterior Craḿer-Rao lower bound (PCRLB),
and we present both single-step and multi-step planning ap-
proaches. We also introduce an efficient search technique
that allows us to quickly perform the necessary optimisa-
tion(s). Sensor trajectories are shown to be almost identi-
cal to those obtained by performing an enumerative search,
but the computational load is reduced by several orders of
magnitude. Simulation results are presented for 1, 2 and
3 sensor scenarios, and compare the single-step and two-
step approaches. The performance (in terms of both the
PCRLB and particle filter estimation errors) improves both
with two-step planning and as sensor numbers increase, as
one would expect.

Keywords: Posterior Craḿer-Rao lower bound, bearings-
only tracking, Fisher information matrix, non-linear filter-
ing, resource management, target motion analysis.

1 Introduction
The PCRLB is defined to be the inverse of the Fisher in-
formation matrix (FIM) [1] and, in the context of tracking,
provides a bound on the optimal achievable accuracy of tar-
get state estimation. Traditionally the bound has been used
to assess the performance of filtering algorithms (e.g. [2]).
However, utilising the sensor resource in order to control
the PCRLB has recently been proposed for radar system
design [3] and used in automating the spatial deployment
and operation of a limited sensor resource [4].

Further, a recent development [5] now allows computa-
tionally efficient calculation of the PCRLB for general non-
linear estimation problems. The overall result is that the
PCRLBs can be calculated quickly, making them suitable
for application in a range of online, real-time sensor man-
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agement scenarios. The sensor management technique [4]
has proved to be particularly effective in deploying passive
sonobuoys in submarine tracking. Moreover, it has recently
been shown to be a viable technique for multistatic radar
resource management [6], and for bandwidth limited sen-
sor selection in large networks of unattended ground sen-
sors [7].

Another popular area of sensor management research has
been optimal observer manoeuvre in bearings-only tracking
(see [8] and references therein). Here the problem is to de-
termine the sensor path that will allow best estimation of
the uncertain target state. In [8] the authors consider the
problem of tracking a target that can perform manoeuvres
but travels with a constant velocity on each leg. Condi-
tions prescribing the optimal observer trajectory based on
the CRLB1 are then determined. Other papers have also
looked at the problem of optimal observer manoeuvre using
the CRLB. In [9] a constant velocity target was considered
and in [10] a fixed target was being localised but with ad-
ditional constraints imposed on the observer path. In [11]
continuous time analysis was performed, again for a con-
stant velocity target.

In the current paper we are again concerned with opti-
mising the motion of bearings-only sensor platforms (e.g.
aircraft) in order to best track an uncertain target. We build
on previous work [12] to consider multi-step planning (or
“fine-step” planning: see [7]), and we again perform the
necessary sensor management by controlling a measure of
estimation error based on the PCRLB. As in [12] we also di-
vide the observation period into a number of sub-intervals
of equal duration, and only allow sensor manoeuvres at
discrete time points. However, we present a computation-
ally efficient means of determining the optimal manoeuvres
that results in a considerable improvement in running time
when compared to an enumerative search technique. We
also show that multi-step planning provides better solutions
(than single step planning) with both the PCRLB and filter
Root Mean Squared Errors (RMSEs) lower.

1This is the inverse of the FIM when estimating an uncertain butnon-
random parameter vector.



There are two primary differences between the current
paper and the previous work reported earlier. Firstly, we
allow the target dynamics to be both uncertain and random,
necessitating utilisation of the PCRLB, which has to ac-
count for the uncertain target dynamics and, as a result, is
more complicated than the CRLB. The second difference is
that we allow multiple observers, although we note that in
many of these previous works the extension from the single
observer case is straightforward.

The paper is structured as follows. In section 2 we de-
termine the PCRLB for the focal problem. In section 3
we present the sensor management algorithm and define
the single-step and multi-step optimisation problems. In
section 4 we present the efficient optimisation algorithm.
Simulation results are given in section 5 with conclusions
following in section 6.

2 Posterior Cramér-Rao Bounds
2.1 Definition
Let X̂k be an unbiased estimator of a parameter vectorXk,
based on some measurement sequence. Then the PCRLB
for the error covariance is defined to be the inverse of the
FIM, Jk [1], i.e.

Ck , E

[

[

X̂k − Xk

] [

X̂k − X
]T

]

≥ J−1
k (1)

The inequality in equation (1) means that the difference
Ck − J−1

k is a positive semi-definite matrix.

2.2 PCRLBs For Target State Estimation
We consider the following linear dynamical system

Xk+1 = AkXk + wk (2)

whereXk is the target state at timek and{wk} is a white
noise sequence, withwk ∼ N(0, Qk). Measurements are
available at discrete time epochs. We denote the measure-
ment sequence byZk, k ≥ 1.

Until recently, calculating PCRLBs has proved notori-
ously difficult. However Tichavsky et al. [5] provide an
elegant Riccati like recursion giving the sequence of Fisher
information matrices,Jk, k > 0, for the general non-linear
estimation problem. Moreover, based on the target motion
model (2) it can easily be shown (e.g. [2]) that the general
recursion of [5] reduces to

Jk+1 =
(

Qk + AkJ−1
k AT

k

)−1
+ JZ(k + 1) (3)

whereJZ(k + 1) is the measurement contribution (see the
next section). The initial FIM is given by

J0 = E

[

−∆X0

X0
log p(X0)

]

(4)

where ∆X0

X0
is a second-order partial derivative operator

(see e.g. [5]). Ifp(X0) ∼ N(X̄0, C0) thenJ0 = C−1
0 .

2.3 The Measurement Contribution
Measurements epochsk = 1, 2, . . . occur at timest = Tk,
where T is the time between successive measurements.
There is a minimum detection ranger at each sensor, in-
side which the target cannot be detected (see [13] for an
explanation as to why this is necessary). If the target is out-
side of this range then a target generated measurement is
received. There is no clutter.

Measurements are of bearings only. The measurement at
sensorj at timek can then be written as

Zj
k = tan−1

(

yk − yj
k(S)

xk − xj
k(S)

)

+ νk (5)

where

Xj
k(S) = (xj

k(S) ẋj
k(S) yj

k(S) ẏj
k(S))T (6)

Xk = (xk ẋk yk ẏk)T (7)

give the states of sensorj and the target respectively (no-
tation is standard). The error,νk ∼ N(0, σ2). It is then
straightforward (e.g. [2]) to show that the measurement
contribution to the PCRLB is given by

JZ(k) =
1

σ2

N
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where

Hj(Xk) =













(yk−y
j

k
(S))

(xk−x
j

k
(S))2+(yk−y

j

k
(S))2

0
−(xk−x

j

k
(S))

(xk−x
j

k
(S))2+(yk−y

j

k
(S))2

0













T

(9)

Ir() is an indicator function that is equal to unity if the sen-
sor and target are separated by a distance greater thanr,
and is zero otherwise.N is the number of sensors. The
expectationE [] is with respect to the target state.

3 Sensor Management
3.1 Background
The general framework detailed in [4] is based on utilis-
ing the sensor resource in order to control the PCRLB. The
PCRLB is dependent on a number of factors: the target state
probability density function (PDF), the sensor location(s)
and the measurement accuracy. Hence, in our focal appli-
cation, we can analyse a range of (candidate) sensor trajec-
tories, and in each case determine the sequence of Fisher
information matrices,Jk, k ≥ 1. We are then in a posi-
tion to control the sensor trajectories in order to minimise
a measure based on the resulting PCRLBs (given byJ−1

k ,
k ≥ 1).



3.2 Performance Measure
In this paper, the path of each sensor is determined entirely
from the prior target distribution (at time 0) and (assumed
known) target dynamics2. The initial FIM is then given by
J0 = C−1

0 , with Jk, k ≥ 1 given by the recursion (3).
Each measurement contribution,JZ(k) is calculated us-

ing Monte Carlo integration [14] based on the prior target
distribution at time epochk. This is calculated from the
target distribution at time 0 and known dynamics. In fig-
ure 2(a) we provide a demonstration (based on a sample
of 1000 particles) of how this prior may change during the
course of the simulation (see section 5.1 for details of the
scenario).

At each time epochk, the measure of performance is
then taken to be the largest target location RMSE bound,
bk, given by:

bk , max

[

√

J−1
k (1, 1),

√

J−1
k (3, 3)

]

(10)

where J−1
k (i, i) denotes theith diagonal entry ofJ−1

k .
J−1

k (1, 1) (respectivelyJ−1
k (3, 3)) is the mean squared er-

ror (MSE) bound on the estimation ofxk (respectivelyyk).

3.3 Sensor Flight Paths
3.3.1 Discretising The Decision Process

We will discretise the decision process in the same way as
the measurement process. At time epochk, each sensor can
perform a manoeuvre which controls its subsequent motion
between epochsk andk+1, and most importantly, specifies
the position of the sensor at the time of the next measure-
ment. It is assumed that each manoeuvre occurs instanta-
neously and the sensor then has constant velocity on each
leg (i.e. between epochsk andk + 1)3.

We letak denote the vector prescribing the manoeuvres
performed by each sensor at time epochk. The optimisation
problem is then to select a series of actions{ak : k ≥ 0},
for each sensor, to control the overall measures of perfor-
mance,{bk : k ≥ 1}. The optimisation of each sensor tra-
jectory is constrained by its manoeuvrability and maximum
possible acceleration/deceleration, together with its mini-
mum and maximum speeds.

3.3.2 Single Step Planning

In single-step planning we will use a step-by-step optimi-
sation approach, in which manoeuvrea?

k is chosen to min-
imisebk+1, i.e.

a?
k , argminak

[bk+1] (11)

2We note that an alternative approach, given in the original frame-
work [4], creates “renewals” in the sensor management algorithm by gen-
erating posterior target state estimates as measurements become available.
This approach has been shown to improve the effectiveness of the sensor
management algorithm still further [13].

3We note that the theory presented in this paper supports a number
of motion models, and is not dependent on using this slightly artificial
acceleration profile.

This approach was also used to generate the sensor trajec-
tories in [12].

3.3.3 Two-Step Planning

We note that making manoeuvreak at time k has an ef-
fect on bothbk+1 and the future performance measuresbr,
r > (k + 1). The reason for this is that the sensor ma-
noeuvrability/acceleration is constrained. Hence, each ma-
noeuvre will affect the possible trajectory over a number of
future legs.

In two-step planning we select the manoeuvre,a?
k(2) at

time k in order to control bothbk+1 and the value of the
measure at the next measurement epoch, i.e.

a?
k(2) , argminak

[bk+1 + bk+2] (12)

Now, letak+1|ak denote an action at timek + 1 given the
actionak at timek. We note that in two-step planning on
the second (final) step we simply have to optimisebk+2, i.e.

âk+1 , argminak+1|ak
[bk+2(ak; ak+1)] (13)

where the notation,bk has been adjusted to note the depen-
dency on the actions at timesk andk + 1. We note that
âk+1 is dependent on (i.e. is a function of)ak.

Hence we can adopt a two-step dynamic programming
approach of first determininĝak+1 and the associated
PCRLB measure value:

b̂k+2(ak) , bk+2(ak; âk+1) (14)

and then determininga?
k(2) from

a?
k(2) = argminak

[

bk+1 + b̂k+2(ak)
]

(15)

The two-step planning sensor path is then given by
{a?

k(2) : k ≥ 0}. We note that calculation of̂ak+1 is merely
an intermediate step, and̂ak+1 does not form part of the fi-
nal solution.

3.3.4 Generalisation: Multi-Step Planning

In the caseR-step planning,a?
k(R) is chosen such that

a?
k(R) = argminak



bk+1 +

R−1
∑

j=1

bk+1+j



 (16)

A simple extension of equations (13) – (15) gives us a dy-
namic programming scheme for the generalR-step plan-
ning problem. However, this approach suffers a combi-
natorial explosion as the number of additional time steps
increases, because each additional control,âk+r (r =
1, . . . , R − 1) must be calculated as a function of all pre-
vious actionsak, . . . , ak+r−1. This makes the technique
impractical.

Alternatively, we could search fora?
k(R), and the addi-

tional controls at time epochsk + 1, . . . , k + R − 1 simul-
taneously by using an evolutionary search technique, such
as a genetic algorithm [15].



4 An Efficient Search Technique
4.1 Approach
In this paper we perform only single-step and two-step
planning. We are then faced with the problem of optimis-
ing either a single action vector,a?

k, or using a two stage
approach in which we first optimisêak+1 and then deter-
minea?

k(2).
At each time step we determine the manoeuvre of each

of the sensors sequentially using an iterative scheme. In
this scheme we in turn determine the optimal manoeuvre
of each sensor given the “current” manoeuvres of each of
the other sensors, and loop around until convergence is
achieved4 (i.e. no sensor deviates its course from that de-
termined on the last iteration).

We now introduce an efficient search algorithm that will
enable us to quickly determine the required sensor manoeu-
vres. We describe how this algorithm works by means of an
example. In figure 1(a) we show the first stage of the search.
The region divided into 4 quadrants gives the potential loca-
tions of a sensor at the time of the next measurementk + 1,
given the current sensor state (at timek) and maximum pos-
sible acceleration/manoeuvre. We divide this region into
the 4 quadrants by selecting 9 positions as shown. Each
position also has a velocity associated with it, specified by
the position of the sensor at timek and the manoeuvre,ak

necessary to reach this location at timek + 1.
For each quadrant we determine the performance mea-

surebk+1 at each of its corners5 and then select the quadrant
with the lowest average value. We then divide this quad-
rant into 4 in the same way (see figure 1(b)) and repeat the
process. At each stage we keep a note of the best found so-
lution. The procedure terminates after either a fixed num-
ber of divisions, or if the best solution found has not im-
proved for a pre-specified number of iterations. The com-
plete search is shown in figure 1(c).

4.2 Comparison with Enumerative Method
To show the effectiveness of the efficient search algorithm
we compared it to an algorithm that uses an enumerative
grid search to determine (near) optimal sensor trajecto-
ries (see figure 1(d)). In figure 2 we show the results of
this comparison when the two techniques are applied to a
single-sensor problem in order to find single-step planning
solutions. The enumerative technique searches for near-
optimal solutions by dividing the region prescribing the po-
tential sensor locations into a grid of101 × 101 locations
and (at each stage) recording the best solution.

We see from figures 2(b) and figure 2(c) that the sensor
paths are almost identical. Unsurprisingly there is also lit-
tle difference between the RMSE bounds determined using

4Or we reach a maximum number (here = 10) of iterations.
5We note that the value of this measure also depends on the “candidate”

locations of the other sensors.

the two approaches (see figure 2(d)). However, the efficient
search technique is far more economical than the enumera-
tive method. Indeed, in these simulations we allow a maxi-
mum of 6 divisions, meaning we calculate no more than 34
(9+(5×5)) PCRLB values at each stage. This compares to
the enumerative technique which calculates more than104

values during each optimisation.

4.3 Generalisation
The technique described in section 4.1 searches a two-
dimensional region by selecting 9 points that define the
perimeter of 4 quadrants and then focusing attention on one
of the quadrants, on which the procedure is repeated. This
technique works well for this type of problem, and there-
fore enables us to determine near-optimal solution for the
single-step and two-step planning problems.

However, to apply this technique to problems in which
the search space has more than two dimensions requires di-
viding this higher dimensional space into sub-regions. It is
not clear how we should then select the perimeter points.

5 Simulations
5.1 Scenario
The target moves with nearly constant-velocity (CV) [16],
with a power spectral density ofl = 1 × 10−8. The
initial target state has a Gaussian distribution with mean
X̄0 = (1000 − 40 1000 − 40)T and covarianceC0 =
diag(10, 1, 10, 1). The time between successive measure-
ment epochs isT = 5 seconds. Distances are in metres,
and velocities are in metres per second. In figure 2(a) we
show 1000 evolutions of the target path.

We track the target for 150 seconds (30 manoeuvres), us-
ing either 1, 2 or 3 sensors. The minimum detection range
is set atr = 1000 metres and the bearing error standard
deviation of target generated measurements isσ = 0.01
radians. The initial sensor states are as follows:

X1
0 (S) = (1800 − 40 2000 − 40)T (17)

X2
0 (S) = (2000 − 40 2000 − 40)T (18)

X3
0 (S) = (1600 − 40 2000 − 40)T (19)

Each sensor has a minimum speed of50 m/s and a maxi-
mum speed of200 m/s. Sensor platforms can manoeuvre
up toπ/10 radians and change their speed by a maximum
of 10 m/s at each decision epoch.

5.2 Results
We use the efficient search algorithm to calculate one-step
and two-step sensor paths for the 1, 2 and 3 sensor scenar-
ios. Results for the 2 sensor scenario are given in figure 3,
with a summary of the overall results given in table 1 and
table 2. In each case we also perform tracking, using a Par-
ticle Filter (PF) with 10,000 sample points (see [17] for a
comprehensive review of PF techniques) and filter RMSEs



are compared to the PCRLB. In the PF we take the Impor-
tance Density to be the prior, and we use Sampling Impor-
tance Resampling to produce a sample of equally weighted
particles that approximates the posterior target PDF.

We see from figures 3(c) – (d) that in the 2 sensor sce-
nario, two-step planning gives improved performance when
compared to single-step planning, both in terms of the val-
ues of the PCRLB and the filter RMSEs (see also table 1).
Unsurprisingly, two-step planning also performs better in
the other sensor scenarios, with the PCRLB showing an
improvement of up to28% (1 sensor comparison: see ta-
ble 2), and filter RMSEs being up to41% lower (again, see
1 sensor comparison in table 2). We also observe that as
the sensor number increases, performance improves both in
single-step and two-step planning.

6 Conclusions
We have considered the problem of determining sensor tra-
jectories in bearings-only tracking of an uncertain target.
The basis of our technique is to control a measure of es-
timation error based on the PCRLB, and we present both
single-step and multi-step planning approaches. We also
introduce an efficient search technique that allows us to
quickly perform the necessary optimisation(s). Simulation
results show that performance (in terms of both the PCRLB
and filter RMSEs) improves both with multi-step planning
and as sensor numbers increase, as one would expect.
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Figure 1:(a) – (c): demonstration of the efficient optimisation algorithm,(d): grid search (here a grid of80 × 20 cells is
shown).
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(d): RMSE BOUNDS

Figure 2: (a): the prior target distribution used in calculating the sensor trajectories (here we show the prior at deci-
sion/measurement epochsk = 2i, i = 0, . . . , 25), (b) – (c): the sensor trajectories calculated under the two optimisation
schemes, each ellipse gives 10 times the PCRLB,(d): a comparison of the RMSE bounds in each case.

Table 1: Performance summary, figures in brackets are filter RMSEs averaged over 100 runs of 30 time steps. Non-
bracketed figures are RMSE bounds, averaged over the 30 time steps. All values are in metres.

1 Sensor 2 Sensors 3 SensorsDirection
Single-Step Two-Step Single-Step Two-Step Single-Step Two-Step

x-coordinate 12.3 (13.9) 11.9 (13.2) 7.1 (7.6) 6.8 (7.5) 5.9 (6.9) 5.0 (6.1)
y-coordinate 13.9 (18.1) 10.1 (10.7) 7.3 (9.1) 6.7 (7.1) 6.0 (6.8) 5.1 (7.0)
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(a): SINGLE-STEP PLANNING
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(b): TWO-STEP PLANNING

0 20 40 60 80 100 120 140

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14

R
M

S
E

(m
et

re
s)

elapsed time (seconds)

(c): PCRLB RMSE BOUNDS
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(d): FILTER RMSES

y-coordinate filter RMSE (two-step)
y-coordinate filter RMSE (single-step)

Figure 3:(a) – (b): trajectories of 2 sensors with single-step and two-step planning respectively, each ellipse again gives 10
times the PCRLB. Comparisons of they-coordinate RMSE bounds and filter RMSEs are given in(c) and(d) respectively.

Table 2: The percentage improvement(s) of two-step planning over single-step planning in each sensor scenario. Brack-
eted figures relate to the filter RMSEs, with non-bracketed figures showing percentage improvements in the RMSE
bounds.

% Improvement of two-step planningDirection
1 Sensor 2 Sensors 3 Sensors

x-coordinate 3.6 (4.5) 5.5 (2.0) 15.1 (11.1)
y-coordinate 27.6 (40.6) 8.1 (21.7) 15.2 (-2.6)


