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Abstract — We consider the problem of determining seragement scenarios. The sensor management technique [4]
sor trajectories in the bearings-only tracking of an uncerhas proved to be particularly effective in deploying passiv
tain target. This work differs from previous research intthasonobuoys in submarine tracking. Moreover, it has recently
we allow the target dynamics to be both uncertain and rafreen shown to be a viable technique for multistatic radar
dom; and also consider multi-sensor scenarios. The basesource management [6], and for bandwidth limited sen-
of our technique is to control a measure of estimation err@or selection in large networks of unattended ground sen-
based on the Posterior Craam-Rao lower bound (PCRLB), sors [7].
and we present both single-step and multi-step planning ap-Another popular area of sensor management research has
proaches. We also introduce an efficient search technigbeen optimal observer manoeuvre in bearings-only tracking
that allows us to quickly perform the necessary optimisgsee [8] and references therein). Here the problem is to de-
tion(s). Sensor trajectories are shown to be almost identermine the sensor path that will allow best estimation of
cal to those obtained by performing an enumerative searehe uncertain target state. In [8] the authors consider the
but the computational load is reduced by several orders pfoblem of tracking a target that can perform manoeuvres
magnitude. Simulation results are presented for 1, 2 am@it travels with a constant velocity on each leg. Condi-
3 sensor scenarios, and compare the single-step and twiens prescribing the optimal observer trajectory based on
step approaches. The performance (in terms of both ttiee CRLE" are then determined. Other papers have also
PCRLB and particle filter estimation errors) improves botlooked at the problem of optimal observer manoeuvre using
with two-step planning and as sensor numbers increase,ta® CRLB. In [9] a constant velocity target was considered
one would expect. and in [10] a fixed target was being localised but with ad-
ditional constraints imposed on the observer path. In [11]

Keywords: Posterior Crarér-Rao lower bound, bearings-continuous time analysis was performed, again for a con-
only tracking, Fisher information matrix, non-linear fite stant velocity target.

ing, resource management, target motion analysis. In the current paper we are again concerned with opti-

. mising the motion of bearings-only sensor platforms (e.g.
1 Introduction aircraft) in order to best track an uncertain target. Wedbuil

The PCRLB is defined to be the inverse of the Fisher i Previous work [12] to consider multi-step planning (or
formation matrix (FIM) [1] and, in the context of tracking, [ine-Step” planning: see [7]), and we again perform the
provides a bound on the optimal achievable accuracy of t&f2Cessary sensor management by controlling a measure of
get state estimation. Traditionally the bound has been uggiimation error based on the PCRLB. As in [12] we also di-
to assess the performance of filtering algorithms (e.g- [dee the obseryatlon period into a number of sub-intervals
However, utilising the sensor resource in order to contrgf €qual duration, and only allow sensor manoeuvres at
the PCRLB has recently been proposed for radar systéificrete time points. However, we present a computation-
design [3] and used in automating the spatial deployméety €fficient means of determining the optimal manoeuvres
and operation of a limited sensor resource [4]. that results in a considerable improvement in running time
Further, a recent development [5] now allows computéi‘lhe” compared to an enumerative sgarch technlque.. We
tionally efficient calculation of the PCRLB for general non@/S0 show that multi-step planning provides better sofistio
linear estimation problems. The overall result is that tH&1an single step planning) with both the PCRLB and filter
PCRLBs can be calculated quickly, making them suitabf200t Mean Squared Errors (RMSEs) lower.
for application in a range of online, real-time sensor man

- - - 1This is the inverse of the FIM when estimating an uncertainiou-
(© Copyright QinetiQ Ltd. 2004 random parameter vector.



There are two primary differences between the curredt3 The Measurement Contribution
paper and the previous work reported earlier. Firstly, Weeasurements epocls= 1,2, ... occur at timeg = Tk,
allow the target dynamics to be both uncertain and randofi,ere 7 is the time between successive measurements.
necessitating utilisation of the PCRLB, which has to a8 here is a minimum detection rangeat each sensor, in-
count for th(_a uncertain target dynamics and, as a results_|ae which the target cannot be detected (see [13] for an
more complicated than the CRLB. The second differencedgyanation as to why this is necessary). If the target is out

that we allow multiple observers, although we note that K)ge of this range then a target generated measurement is
many of these previous works the extension from the singlg.qived. There is no clutter.

observer case is straightforward. _ Measurements are of bearings only. The measurement at
The paper is structured as follows. In section 2 we dgénsorj at timek can then be written as

termine the PCRLB for the focal problem. In section 3

we present the sensor management algorithm and define , i
. . .. . 7 —1 yk‘ yk(S)
the single-step and multi-step optimisation problems. In Zy, = ta — |tk (5)
section 4 we present the efficient optimisation algorithm. wr, = 23,(5)
Simulation results are given in section 5 with conclusions
S . Where
following in section 6.
, , X1(S) = (zL(S)#L(S) yi(S)g(SHT (6
2 Posterior Cramér-Rao Bounds ((8) = @lS) 57(5) (S gD ©)
X = (or Tr Yk Ur) (7)

2.1 Definition

Let X, be an unbiased estimator of a parameter vektgr 91Ve the states of sensgrand the target re2specti.vely (no-
based on some measurement sequence. Then the PCAUEN is standard). The errar, ~ N(0,0%). Itis then

for the error covariance is defined to be the inverse of tRfa@ightforward (e.g. [2]) to show that the measurement
FIM, J, [1], i.e. contribution to the PCRLB is given by

~ ~ T N
Ce £ E[[Xka=] - ] }Z']El @ 7o) = 25 S E (L) X0 H; (650 B ()] @)

The inequality in equation (1) means that the difference

Cy — J,, ! is a positive semi-definite matrix. where
2.2 PCRLBs For Target State Estimation (el (5) 4
Tp—xd 2 ) 2
We consider the following linear dynamical system (wr =k (S)) g(y‘ vi(5))
Hj(Xk-) = J 9)
- —(zr—=3,(5))

Xirr = ApXe+wi @ (@r—2L(5))>+ (ys 9] (9))?

where X}, is the target state at timeand{wy, } is a white 0

noise sequence, witly, ~ N(0,Qy). Measurements are

available at discrete time epochs. We denote the measu[r’“é) is an indicator function that is eqqal o unity if the sen-
ment sequence by, k > 1 sor and target are separated by a distance greaterrthan

Until recently, calculating PCRLBs has proved notori‘:’md IS z€ro othervylseN is the number of sensors. The
ously difficult. However Tichavsky et al. [5] provide anexpectatloriE [ s with respect to the target state.
elegant Riccati like recursion giving the sequence of Frishé

information matrices,J, k > 0, for the general non-linear Sensor Management

estimation problem. Moreover, based on the target moti@)1  Background

model (2) it can easily be shown (e.g. [2]) that the genenﬂ1

. e general framework detailed in [4] is based on utilis-
recursion of [5] reduces to

ing the sensor resource in order to control the PCRLB. The
_ -1 i .
Jer1 = (Qr+ It AD) T +z(k+1) (3) PCRLB is dependent on a number of factors: the target state
probability density function (PDF), the sensor locatign(s
whereJz(k + 1) is the measurement contribution (see thend the measurement accuracy. Hence, in our focal appli-

next section). The initial FIM is given by cation, we can analyse a range of (candidate) sensor trajec-
X tories, and in each case determine the sequence of Fisher
Jo = E [—Axﬁ IOgP(Xo)} (4) information matrices,J;,, k > 1. We are then in a posi-

. . o tion to control the sensor trajectories in order to minimise
where Ay’ is a second—orQer partial derivative operata§ measure based on the resulting PCRLBs (gived,pil,
(see e.g. [B]). I(Xo) ~ N(X,,Cy) thenJy = Ci . k> 1).



3.2 Performance Measure This approach was also used to generate the sensor trajec-

In this paper, the path of each sensor is determined entirgweS in [12].
from the prior target distribution (at time 0) and (assumegi3.3  Two-Step Planning

known) target dynamiés The initial FIM is then given by We note that making manoeuvtg at time & has an ef-

=7t wi k> 1aqi '
JOEaCC;]‘) m’eV:;ErL(]akr#énY ;o%z?btggig]&;(aigug;gglsga Us- fect on bothb,1; and the future performance measubgs
r. > (k 4+ 1). The reason for this is that the sensor ma-

ing Monte Carlo integration [14] based on the prior target . o .
S X ol noeuvrability/acceleration is constrained. Hence, eaah m
distribution at time epoclt. This is calculated from the

target distribution at time 0 and known dynamics. In fi Uiﬁ?g:g(‘;’;’m affect the possible trajectory over a number of

ure 2(a) we provide a demonstration (based on a samp"f(?n two-step planning we select the manoeuvrg(2) at

of 1000 parncle_s) of how this prior may change dqrmg tht(|eme k in order to control bottb,; and the value of the
course of the simulation (see section 5.1 for details of the .
Mmeasure at the next measurement epoch, i.e.

scenario).

At each time epoctk, the measure of performance is ap(2) £ argmin, [brg1 + brro] (12)
then taken to be the largest target location RMSE bound, i i i
by, given by: Now, letay1]a, denote an action at time+ 1 given the

actiona;, at timek. We note that in two-step planning on
by 2 max {\/Jk—l(l, 1), \/‘]k_l(333)] (10) the second (final) step we simply have to optintigey, i.e.

. N .
where J; ' (i,i) denotes theith diagonal entry ofJ, '. R I3 Pr2(asi an)] - (13)
kal(L 1) (respectivelyJ,;l(& 3)) is the mean squared er-where the notatiory, has been adjusted to note the depen-
ror (MSE) bound on the estimation of, (respectivelyy,). dency on the actions at timésandk + 1. We note that

) ar+1 1s dependent on (i.e. is a function af).
3.3 Sensor Flight Paths Hence we can adopt a two-step dynamic programming
3.3.1 Discretising The Decision Process approach of first determining;,; and the associated
ggRLB measure value:

We will discretise the decision process in the same way
the measurement process. At time epbchach sensor can 3k+2(ak) L bpio(ar;drprr) (14)
perform a manoeuvre which controls its subsequent motion .

between epochisandk +1, and most importantly, specifies@nd then determiningy;(2) from

the position of the sensor at the time of the next measure- N _ A

ment. It is assumed that each manoeuvre occurs instanta- ~ “(2) = argmin, - |bepy + b’““(a’“)} (15)

neously and the sensor then has constant velocity on eggfa two-step planning sensor path is then given by
¢ 3
leg (i.e. between epoctisandk +1)°. {a%(2) : k > 0}. We note that calculation @f, , ; is merely

We letay, denote the vector prescribing the manoeuvreg, intermediate step, anig.,; does not form part of the fi-
performed by each sensor at time epéciThe optimisation 5 solution.

problem is then to select a series of actidng : k£ > 0}, o _ _
for each sensor, to control the overall measures of perfér3.4 Generalisation: Multi-Step Planning

mance {by : k > 1}. The optimisation of each sensor train the caseR-step planningg (R) is chosen such that
jectory is constrained by its manoeuvrability and maximum

possible acceleration/deceleration, together with itsimi . _ Rl
mum and maximum speeds. aj(R) = argmin, |bry1+ »  bepiy,| (16)
j=1

3.3.2 Single Step Planning
. . . . A simple extension of equations (13) — (15) gives us a dy-
In glngle-step pla_nnlng_ we will use a §tep-by-step Opt'mﬁamic programming scheme for the geneRaktep plan-
isn"’;['soenbappr?s(;h’ in which manoeuwris chosen to min- ning problem. However, this approach suffers a combi-
k41, 1.€.

natorial explosion as the number of additional time steps

afy = argmin, by 1] (11) increases, because each additional contégl,, (r =
1,... — 1) must be calculated as a function of all pre-

2We note that an alternative approach, given in the origiraing- ] R . ) hi K h hni P
work [4], creates “renewals” in the sensor management alguority gen- vious actionsay;, . .. , ax+r—1. This makes the technique

erating posterior target state estimates as measurementadewailable. impractical.
This approach has been shown to improve the effectivenes@afeinsor  Alternatively, we could search far; (R), and the addi-
management algorithm still further [13]. jonal controls at time epochis+ 1 k+ R — 1 simul-
SWe note that the theory presented in this paper supports ae‘mmg . Lo .
of motion models, and is not dependent on using this slightijicial taneously by using an evolutionary search technique, such

acceleration profile. as a genetic algorithm [15].



4 An Efficient Search Technique the two approaches (see figure 2(d)). However, the efficient
search technique is far more economical than the enumera-
4.1 Approach tive method. Indeed, in these simulations we allow a maxi-
In this paper we perform only single-step and two-steum of 6 divisions, meaning we calculate no more than 34
planning. We are then faced with the problem of optimig9 + (5 x 5)) PCRLB values at each stage. This compares to
ing either a single action vectaty, or using a two stage the enumerative technique which calculates more tltén
approach in which we first optimis®&; ., and then deter- values during each optimisation.
mineaj (2). L.
At each time step we determine the manoeuvre of eahd  Generalisation
of the sensors sequentially using an iterative scheme. The technique described in section 4.1 searches a two-
this scheme we in turn determine the optimal manoeuwémensional region by selecting 9 points that define the
of each sensor given the “current” manoeuvres of each gédrimeter of 4 quadrants and then focusing attention on one
the other sensors, and loop around until convergenceoisthe quadrants, on which the procedure is repeated. This
achieved (i.e. no sensor deviates its course from that deechnique works well for this type of problem, and there-
termined on the last iteration). fore enables us to determine near-optimal solution for the
We now introduce an efficient search algorithm that willingle-step and two-step planning problems.
enable us to quickly determine the required sensor manoeuHowever, to apply this technique to problems in which
vres. We describe how this algorithm works by means of &ine search space has more than two dimensions requires di-
example. In figure 1(a) we show the first stage of the searefiding this higher dimensional space into sub-regionss It i
The region divided into 4 quadrants gives the potentiaHocaot clear how we should then select the perimeter points.
tions of a sensor at the time of the next measurerhent, ) )
given the current sensor state (at timj@nd maximum pos- 5 Simulations
sible acceleratlon/manoeu'vre. We .d.|V|de this region m}oo 1 Scenario
the 4 quadrants by selecting 9 positions as shown. Each
position also has a velocity associated with it, specified dyn€ target moves with nearly constant-velocity (CV) [16],
the position of the sensor at tinteand the manoeuvrey, With & power spectral density df = 1 x 107%. The
necessary to reach this location at tife- 1. initial target state has a Gaussian distribution with mean
For each quadrant we determine the performance megp = (1000 — 401000 — 40)" and covarianc&”, =
sureby,; at each of its corne?snd then select the quadranttiag(10,1,10,1). The time between successive measure-
with the lowest average value. We then divide this quaflent epochs i§” = 5 seconds. Distances are in metres,
rant into 4 in the same way (see figure 1(b)) and repeat ipad velocities are in metres per second. In figure 2(a) we
process. At each stage we keep a note of the best found ¥#w 1000 evolutions of the target path.
lution. The procedure terminates after either a fixed num- Ve track the target for 150 seconds (30 manoeuvres), us-
ber of divisions, or if the best solution found has not imNg €ither 1, 2 or 3 sensors. The minimum detection range

proved for a pre-specified number of iterations. The corf Set atr = 1000 metres and the bearing error standard
plete search is shown in figure 1(c). deviation of target generated measurements is- 0.01

radians. The initial sensor states are as follows:
4.2 Comparison with Enumerative Method

X3(S) = (1800 — 402000 —40)"  (17)

To show the OTf_fte::tivenelss o.ftrtlhe t(;ffi::ient search algorit?m X2(S) = (2000 — 402000 — 40)T (18)
we compared it to an algorithm that uses an enumerative

P g X3(S) = (1600 —402000 —40)T  (19)

grid search to determine (near) optimal sensor trajecto-

ries (see figure 1(d)). In figure 2 we show the results @fy ., sensor has a minimum speedsofm/s and a maxi-
this comparison when the two techniques are applied 1Q. 8y speed 0200 m/s. Sensor platforms can manoeuvre

single-sensor problem in order to find single-step planni% tor/10 radians and change their speed by a maximum
solutions. The enumerative technique searches for Neg¥10 m/s at each decision epoch.

optimal solutions by dividing the region prescribing the po
tential sensor locations into a grid ®61 x 101 locations 5.2 Results

and (at each stage) recording the best solution. We use the efficient search algorithm to calculate one-step
We see from figures 2(b) and figure 2(c) that the sensgiq two-step sensor paths for the 1, 2 and 3 sensor scenar-

paths are almost identical. Unsurprisingly there is a0 lips, Results for the 2 sensor scenario are given in figure 3,

tle difference between the RMSE bounds determined usipgh, 5 summary of the overall results given in table 1 and

40r we reach a maximum number (here = 10) of iterations. table 2. In each case we also perform tracking, using a Par-

5\We note that the value of this measure also depends on theitieaets  ticle Filter (RF) With 10,000 samplg points (Se(_':‘ [17] for a
locations of the other sensors. comprehensive review of PF techniques) and filter RMSEs




are compared to the PCRLB. In the PF we take the Impd6] P. R. Horridge, and M. L. Hernandez Multistatic
tance Density to be the prior, and we use Sampling Impor- Radar Resource Managemg&nSignal and Data Pro-
tance Resampling to produce a sample of equally weighted cessing of Small Targets (ed. O. Drummond), Proceed-
particles that approximates the posterior target PDF. ings of SPIE5204 pp. 583-594, 2003.

We see from figures 3(c) — (d) that in the 2 sensor sce- . .
nario, two-step planning gives improved performance whéfl R- Tharmarasa, T. Kirubarajan, and M. L. Hernandez,
compared to single-step planning, both in terms of the val-  -arge-Scale Optimal Sensor Array Management for
ues of the PCRLB and the filter RMSESs (see also table 1). Multitarget Tracking, submitted to: IEEE Transac-
Unsurprisingly, two-step planning also performs better in tions on Aerospace and Electronic Systems, 2004.

the other sensor scenarios, with the PCRLB showing 8 J. P. Le Cadre, and C. JauffretDiscrete Time Ob-
improvement of up t@8% (1 sensor comparison: see ta-  seryability and Estimability Analysis for Bearings-
ble 2), and filter RMSEs being up 1% lower (again, see  only Target Motion Analysis IEEE Transactions on

1 sensor comparison in table 2). We also observe that as aerospace and Electronic Syster88(1), pp. 178-201,
the sensor number increases, performance improves bothin 19g7.

single-step and two-step planning.
) [9] J. P. Le Cadre, Optimization of the Observer Motion
6 Conclusions for Bearings-Only Target Motion AnalygjsProceed-

We have considered the problem of determining sensor tra- ings3<if2'éhe3igtlh gonfg_r enceccj: Bescisifgge;nd Control,
jectories in bearings-only tracking of an uncertain target PP- A » San Uiego, LA, ' '

The basis of our technique is to control a measure of §30] Y. Oshman, and P. DavidsonOptimization of Ob-
timation error based on the PCRLB, and we present both server Trajectories for Bearings-Only Target Localiza-

single-step and multi-step planning approaches. We also tjon, IEEE Transactions on Aerospace and Electronic
introduce an efficient search technique that allows us to systems35(3), pp. 892-902, 1999.

quickly perform the necessary optimisation(s). Simulatio

results show that performance (in terms of both the PCRL&1] J. M. Passerieux, and D. Van CappeQptimal Ob-
and filter RMSEs) improves both with multi-step planning ~ server Maneuver for Bearings-Only TrackindEEE

and as sensor numbers increase, as one would expect. Transactions on Aerospace and Electronic Systems,
34(3), pp. 777-788, 1998.
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Figure 1:(a) — (c): demonstration of the efficient optimisation algorithah): grid search (here a grid 60 x 20 cells is

shown).
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Figure 2: (a): the prior target distribution used in calculating the sersajectories (here we show the prior at deci-
sion/measurement epochs= 2i,i = 0, ... ,25), (b) — (¢): the sensor trajectories calculated under the two optiiisat
schemes, each ellipse gives 10 times the PCRUB,a comparison of the RMSE bounds in each case.

Table 1: Performance summary, figures in brackets are fildERs averaged over 100 runs of 30 time steps. Non-
bracketed figures are RMSE bounds, averaged over the 30ti&pe fll values are in metres.

1 Sensor 2 Sensors 3 Sensors
Single-Step| Two-Step | Single-Step| Two-Step| Single-Step| Two-Step
x-coordinate| 12.3(13.9) | 11.9(13.2)| 7.1(7.6) 6.8(7.5) | 5.9(6.9) | 5.0(6.1)
y-coordinate| 13.9 (18.1) | 10.1 (10.7)| 7.3(9.1) 6.7 (7.1) 6.0 (6.8) 5.1(7.0)
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Figure 3:(a) — (b): trajectories of 2 sensors with single-step and two-stepnite respectively, each ellipse again gives 10
times the PCRLB. Comparisons of thecoordinate RMSE bounds and filter RMSEs are giveft)rand(d) respectively.

Table 2: The percentage improvement(s) of two-step planouer single-step planning in each sensor scenario. Brack-
eted figures relate to the filter RMSEs, with non-bracketedréig showing percentage improvements in the RMSE
bounds.

% Improvement of two-step planning
1 Sensor | 2 Sensors| 3 Sensors
z-coordinate| 3.6 (4.5) | 5.5(2.0) | 15.1(11.1)
y-coordinate| 27.6 (40.6)| 8.1 (21.7)| 15.2 (-2.6)
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