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Abstract — Classical vehicle tracking approaches for highwayveighted sum of several filter estimates which are based on
scenarios use a Kalman-filter with a single dynamic modeit optifferent dynamic models [7, 8, 9].

mise_d to a single driving manoeuvre. In contrast, the Inténa This paper first describes the IMM algorithm. In sec-
Muiltiple Model (IMM) filter allows for several parallel motie ion 3 the dynamic models and their parametrisation as well
which are combined to a weighted estimate. Choosing moadlels fis the parametrisation of the IMM method based on the
different driving .mOdeS such as constant speed, accedm_amd analysis of Stop&Go scenarios are systematically derived.
strong acceleration changes permits the object state atitmto The performance of the IMM approach is presented in sec-
be optimised for highly dynamic driving manoeuvres. Thespap.. . . . . .
describes the analysis of Stop&Go situations and the sydiem tion 4W'th !’espect to asingle Kalman filter |1nplemen.tat|on.
parametrisation of the IMM method based on these statistibe S€Ction 5 introduces a second IMM model-set design and
evaluation of the IMM approach is presented based on readaen Presents its performance based on simulations and section 6
measurements of two laserscanners, a radar and a video imayancludes the paper.

processing unit. The performance of the lateral estimatibthe ) )

IMM is shown based on simulations. 2 Interacting Multiple Model

Keywords: Driver assistance systems, IMM, model-set desigl:l-,he IMM method is composed of four main parts

traffic jam situations. e Interaction — the individual filter estimates are mixed
with respect to the predicted model probabilities.

1 Introduction o Model specific filtering — each filter predicts and up-

_ ) _ _ dates its state estimate using its dynamic model as-
Future driver assistance systems have increasing demand symptions.

for a consistent and precise dynamic representation of the

environment. The model based estimation of the dynamic® Model probability update — the model probability of
parameters which describe the objects position, velocity €ach modelis updated with respect to the innovation
and acceleration is of particular interest. Numerous publi ~ €ffor.

cations describe object tracking approaches using a Kalman compination — for output purposes a combined state

filter with linear dynamic models [1, 2, 3, 4]. Some ap-  ggtimate is calculated from the weighted state esti-
proaches use non-linear models and are therefore based on ,5tes.

an Extended Kalman filter [5]. All of these approaches, _ ) ) )
however, try to represent the dynamic behaviour of trafffcollowing [10, 11, 12] the IMM algorithm is summarised
participants by the use of a single general dynamic modBg!ow.

As the dynamic state of vehicles is highly variable ov 1 Interaction
time, the general dynamic model has to meet the condi-

tions of the most extreme situations as otherwise the filtthe predicted model probability is given with the model
is bound to be inconsistent in scenarios with high dynamjixobability of the previous CyC|ﬁ§£1|k71 and;; which

changes. is the probability that the transition from statdo statei
Recent research in the area of driver assistance syst&1agurs

takes multiple model approaches into account. Each model u(i) _ Z - __‘u(j) L

is designed to represent a certain mode or dynamic driving klk—1 - J1k—1k—1

behaviour of an object. The aim is a situation adaptive esti- - o o
mation. In [6] the different models are switched dependirdyith the conditional model probability, given the object is
on the actual dynamic situation. Problems are describécstate i that the transition occurred from state j

concerning the tradeoff between switching delays and too o)
frequent switches. Other approaches use the IMM filter- u&?w,l - % )

ing which enables a "soft decision”. The final estimate is a klk—1
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~(j Fig. 1: Analysis of a Stop&Go situation.
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dynamic behaviour. For the longitudinal dynamics four

i occurs, are a design parameter of the IMM method. Th&@sses are considered:- stationary (S), constant velpcity
are motivated by a Markovian switching process and wifEV), constant acceleration (CA) and a class representing a
be discussed in section 3.3. maneuver change. The lateral dynamics are separated into

constant yaw angle¢ (CP) and varying yaw angle.

In order to prevent a too frequent switching between the
_ states, slight deviations from the dynamic constraintsbre
The predicted state estimaté%)kil and their covariances lowed. The degree of deviation is determined by the choice
&fjthe model noise.

The probabilitiesr;; that the transition from statgto state

2.2 Model specific filtering

ng)kq are calculated in our approach using an Extend
Ka 5?1:1 Dynamic Models

man filter. The different model assumptions will be di
cussed in section 3.1. The innovation is performed by ¢

culation of the measurement residlsgl), the residual co- The dynamic modelling of the Extended Kalman—filter ker-
nels used in the IMM method determines the constraints of

variances(i), the updated state estimatf and its covari- . .
k P %k the dynamic process. Two different general model groups

anceP,(fl)k. are considered. The free motion model and the bicycle
N model. In the case of the latter model the motion is di-
2.3 Model probability update rected into the objects orientation neglecting the sliphef t

The likelihood for the observation is calculated from th&/€€!S:

. (1) . . ..
readuabk assuming Gaussian statistics 311 Free motion model

) exp[—(1/2)(55;))/(81(5))_155;)] The dynamic state of the constant acceleration model is
L= 278|172 (5) given byxca = [2,y,%,vs,vy. s, a,) Where[z,y]’ is
k

the position, the yaw anglefv,, v,]’ the velocity vector
and|a, a,]’ the acceleration vector.

Thus, the predicted model pmbab'“t'ﬂg\kfl are updated For the model of constant acceleration the dynamics are

W 0 given by
) = Pkt (6) S
klk (9) () z
Z Mkﬂkflij Uy 0
! 0 nw
2.4 Combination Xca= | az |+ 8 ©)
a
The overall state estimafg, |, and its covarianc®;, are Oy Na,
a weighted combination of the model state estimaﬁ%),g L 0 | [ ma, |
and their covariancerjl)k whereny, n,, andn,, are white noise terms which ac-
o count for the errors made by the model assumption of con-
Xk = 2 u}j)kg‘)k (7) stant acceleration and constant yaw angle.

- - , ; The state vector of the constant velocity modedds, =
_ () rp(@) . <) g o (1)
Pk = 22 g [Py + Rire = Xy po) Rege — Xi1,)'(8) [z, Y, 1, vz, vy, az = 0,a, = 0]'. The differential equation
. describing the constant velocity model is given by
3 Model-set design

In order to focus on the examination of the IMM filter per- Zx 8
formance, we concentrated on Stop&Go driving situations. 6’ ny
Extended data from the Inertial Navigation System (INS) v =] 0 |+ nu) (10)
of motorway traffic jams was analysed concerning the ve- 0 nvm
locity, acceleration and yaw rate in order to determine the 0 Oy
different driving modi. From those, the models of the IMM 0 0

model-set were derived. - - - -
Figure 1 shows the velocity in a Stop&Go situationwheren,,, andn,, are white noise terms which account for
The sequence is divided into sections of almost constahe errors made by the constant velocity assumption.



The state vector of the stationary modelis = 3.2 Model noise covariance
[, 9,1, v, = 0,0, = 0,a, = 0,a, = 0]". The differential

equation describing the stationary model is given by The model noise covariance matii at time# is calcu-

, lated using the direct discrete white noise approach, where
Xg = [ Ng Ny ngy 0 0 0 0 ] (11) T is the noise gain and? the variance of the process noise

wheren, andn, are white noise terms which account follo]

the errors made by the model assumption. Qy = ol (15)

3.1.2 Simplified bicycle model

. . . A first estimation of the standard deviation of the model
The dynamic state of the model is given by =

, _ . noiseo is given by the allowed deviation in the labelling
[#,y, %, v,w, a] wherelz, y] is the positiony) the yaw an- ,ceq described above. In order to find the optimal noise
gle, v the velocity,w the yaw rate and the acceleration. jo,e| 'sequences of measurements are chosen which meet
The orientation of the velocity and accelgrat_lon Vectoes . different model assumptions. Using hypothesis testing
here defined by the yaw angle as shown in figure 2. technigues the process noise can be optimised with respect
A X to peak—RMS errors and mean—RMS errors.

3.3 Markov transition probability matrix

The diagonal elements of the transition matrix represent th
probability that the object remains in mode Following
[11] they are related to the mean sojourn time$ é&nd the
sampling intervall’

T

Ti

y

The mean sojourn time as well as the off-diagonal elements

Fig. 2: Simplified bicycle model of the kinematic behaviousre derived from the statistics of the above mentioned ana-
of a vehicle. The orientation of the velocity and accelerdysis of the Stop&Go scenario. 1f;; is the counted number

tion vectors are defined by the yaw angleand yaw rate of transitions from mode to mode;j andn; is the sum of

w. all transitions from mode, the transition probabilities are
: . . - r%iven by
The differential equation describing a constant accelera-
tion and constant yaw rate is approximated by - n_i_j(l — ) (17)
v cos(1)) 0 i
i 0
”Slz(w) 0 4 Results based on Real Measurements
Xyoa = aall I (12) . .
a 4.1 Experimental setup and system architecture
0 N
0 Na The experimental setup for evaluation of different IMM

N hat the infl £ th h ... implementations is composed of two test vehicles. The

isorgz tleacl:tt; de 'naLr’]che ;)retvx‘/ehi)tlg\,\rl]c:gf?gr:nse xﬁizogc_ego—vehicle is equipped with an Inertial Navigation System
9 Mo NG = "(INS), a GPS sensor and several forward looking sensors.

count for the errors made by the constant acceleration a Wo infrared Laserscanners are mounted at the left and

constant_ yaw ra_te assumptlon. - _right side of the front bumper, thus covering the region left
The differential equation describing a constant velocnr)(ght and in front of the ego-vehicle. The object recogni-

and constant yaw angle is tion range is up to 60 m. The pre—processed measurements

v cos(¢) 0 which are delivered to the fusion system are a three point
vsin(e) 0 contour description of the detected objects.
. _ 0 | W (13) A 77 GHz long range radar measures the relative position
Xvev 0 N and radial velocity of objects. The field of view is limited
0 0 to 6° azimuth angle and 120 m distance.
0 0 Additionally a monocular vision system, mounted be-

pind the frontal windscreen, detects vehicles and estsnate

wheren, andn, are white noise terms which account fo o . .
HW lane position and curvature. The horizontal aperture is

the errors made by the constant velocity and constant yaw .
angle assumption. 22° and the detection range up to 70 m.
The equation describing the stationary model is equal toThe Larget;_vlehlcée IS equped W't(;] a_nhINSGvgglch mea-
the free motion stationary model sures the vehicles dynamic state and with a 5 sensor in
order to synchronise the sensor measurements with the ego—
Xys = Xg (14)  vehicle.



The IMM algorithm is integrated into a centralisedd.3 Strong acceleration changes
event—triggered sensor fusion architecture described in N ) o
[13]. The measurements are chronologically ordered, thifsStop&Go conditions, potentially very harmful situatson
introducing an additional delay, which can in turn be minjeccur at the end of traffic jams. Cars driving at high speed
mized if the sensor measurement times are predictable [1%ddenly start breaking or even worse, have to brake from
The performance is evaluated using predefined driving nf¥1 acceleration phase.
neuvers. In figure 3 such a driving maneuver is shown. The true
velocity v; recorded from the target—vehicle exhibits the
strong acceleration and then strong deceleration behaviou
The error in the estimated velocity of the target—vehicle

For high i0s the f ) dels i do,bserved from the ego—vehicle is shown below. As ex-
or highway scenarios the free motion models describedjf ey the estimation error of a single constant velocity

section 3.1.1 performed better than the bicycle models d&3,an—filter is high at acceleration phases as the model

scribed in section 3.1.2. For traffic jam situations a mOde(lfssumption does not meet the dynamics of the situation.

set composed of three quels was found to be suitable. The IMM method switches from the stationary to the con-

The first model is a stationary model where the standagthnt acceleration model within few sampling intervals.

deviation of the noise in the position estimate is Once the acceleration is finished the model probability for
the model of constant velocity increases. However, as soon

4.2 Model-set parameters

m

oy =0y =0.32 . (18) as the deceleration process starts the constant acoeterati

model again gains the highest probability. Thus, the IMM

The noise in the yaw angle is given by approach reduces the estimation error significantly inlacce
eration phases compared to the single Kalmanfilter imple-

rad mentation.
, = 0.04 — 19 . . o

T s (19) Figure 4 shows the estimated standard deviation of the

velocity o,,. The uncertainties in the estimation are almost
constant for the Kalman—filter of constant velocity. The es-
timated standard deviation of the IMM method, however,
Tvae = Ovy = 0.89 33 (20)  exhibits a strong variation. In phases of no motion, the
oy =0.12 %l (21) uncertainties are quite low and as soon as the accelera-
tion begins the standard deviation increases. This sitmati
The model of constant acceleration has a high model noagaptive uncertainty in the estimation process is an impor-

The constant velocity model is parametrised with

with standard deviations of tant feature of the IMM approach as in tracking systems
the measurement association gate depends on the estimated

Our = 8.0 73 (22) standard deviation. If the uncertainty is estimated tog low

Tay = 2.0 2 (23) the object might be lost. However, using an IMM approach,

the estimated standard deviation can be adapted to the driv-

oy =0.25 5 (24) ing situation. In our case, the standard deviation raises in

This model is designed to fit phases of constant accelerat~;

101

and acceleration changes, as well as lane changes.
. . . . — 5
The Markov matrixP(7") is determined from the statis- £
. >0

tics of traffic jam situations:

-5 L L L L L I |

0.980 0.000 0.020
P(0.1 sec) = | 0.000 0.970 0.030 (25)

0.003 0.017 0.980 L2 e, e

e b
The transition probabilities are adapted in each cycle wi | 2 M (WA I
respect to the actual sampling interval. The initial mod: ° 2 4 6 8 10 12 14

probabilities are chosen as i, oy piortn e

/ =205 11,'1 "o “\Ij \1
p=1[0333 0333 0.334 ] (26)

| ity “’ = L L I 1 -——-T ------- ]
The IMM based on this model—set is compared to asi  ° ’ ¢ ® imed 10 12 u

gle constant velocity Kalman—filter with ) ) ) ) )
Fig. 3: Velocityv, recorded in target—vehicle. Errors in es-

Tue = 2.0 27) timated velocityu, of single a Ka_lman—filter (cv) (dasheql

_oom (28) red) and of the IMM method (solid green). Model probabil-
Toy = U252 ities 1, of IMM: Stationary (dotted blue), Constant velocity
oy = 2.0 %l (29) (solid green), constant acceleration (dashed red).
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Fig. 4: Errors in estimated velocity. of single Kalman— Fig. 5: Velocityv; recorded in target-vehicle. Errors in es-

filter (CV) (dashed red) and of IMM (solid green). Estitimated velocity, of single a Kalmanfilter (CV) (dashed

mated standard deviation of velocity. NEES of velocity red) and of the IMM method (solid green). Model probabil-

normalized to its 95% probability region. ities 1 of IMM: Stationary (dotted blue), Constant velocity
(solid green), constant acceleration (dashed red).

phases of high dynamics. Therefore the association gate is

enlarged and the object is more likely to be continuousfgrent models takes too long when compared to the duration

tracked. of the maneuver.

The normalised estimation error squared (NEES) ex-Figure 6 shows the estimated standard deviation of the
presses the filter consistency [10]. Figure 4 shows tNelocityo,. The uncertainties in estimation are almost con-
NEES of the velocity estimate normalized to a 95% proistant for the Kalman-filter of constant velocity. The esti-
ability region, assuming & distribution. The normalized mated standard deviation of the IMM method however ex-
NEES of the single Kalman—filter is most of the time aboweibits a strong variation. In phases of standstill, the IMM—
1.0, i.e. the estimated filter uncertainty is not consiste@stimated standard deviation is significantly lower com-
with the true estimation error considering the 95% probabpared to that of the Kalman-filter alone. This enables a
ity region. Conversely, the estimation of the IMM metho#oise reduction of more than 50% compared to the single

is consistent during the whole maneuver. Kalman—filter. As soon as the acceleration or deceleration
begins the standard deviation of the IMM method increases

4.4 Stop&Go again.

Traffic jam situations are characterised by cars driving _

low speed, accelerating, decelerating and stopping. Thé_ i \ ‘,' 1\. /'- , )

different driving maneuvers can change in rapid successit ;0_5 ’-' AR p‘l‘\.\ 'r ‘. ."'W\‘-

In figure 5 such a driving maneuver is shown. The tr." ol g b ! \

velocity v; recorded by the target—vehicle exhibits first . © s 10 % % * 40

standstill and an acceleration directly followed by a dece *

eration to a halt. This pattern is repeated twice. 7

With its four sensors the ego—vehicle measures posm:“’ i A\ W e N

and velocity of the target-vehicle. The error in the est | ‘ ‘ ‘ ‘ ‘ ‘ - ‘

mated velocityv. is shown below. The error of the sin- % 5 10 15 20 2 30 3 40

gle constant velocity Kalman-filter is high during accelere  ¢p

tion and deceleration phases. The IMM implementation c: Sar i

however reduce the error in the acceleration phase afte § | A ,’-’"\ » ﬁﬁ‘

short period of adaption. The model probabilitigd show =" '+ /LY 7% L AL N

that the IMM method switches at the beginning of acceler s o 5 s o m T wm T w T w

time [s]

tion phases from the stationary model to the constant accel-
eration model. As the acceleration is only abBu§;, the Fig. 6: Errors in estimated velocity, of single Kalman—
probability of the constant velocity model rises again.sThfilter (CV) (dashed red) and of IMM (solid green). Esti-
has the effect that the error reduction of the IMM methoghated standard deviation of velocity. NEES of velocity
compared to the single Kalman-filter is significant, but neformalized to its 95% probability region.

as high as expected. Using four models, with an additional

model for constant acceleration with very low process noiseThe normalized NEES of the single Kalman-filter is in
did not improve the results, as the switching across the difhases of acceleration most of the time above 1.0, i.e. the



estimated filter uncertainty is not consistent with the truehis model is designed to fit phases of acceleration
estimation error considering the 95% probability region. Ichanges, lane changes and transitions from straight drivin
contrast the IMM—-estimation is consistent during almosb turning at a crossing.

the whole maneuver. Exceptions are at the beginning ofThe Markov matrixP (T') is determined from the statis-
the acceleration when the model probability of the acceldies of traffic jam situations:

ation model is still increasing. This is due to the maneuver

detection delay of the IMM approach. P(0.1 sec) = { 0.97 0.03 ] (34)
' “ ] 0.05 0.95

5 Results based on simulations H - babilt danted i H evele with
. e transition probabilities are adapted in each cycle wit

The abov_e ShOV.V” performance of thg IMM using threreespect to the actual sampling interval. The initial model
models with stationary, constant velocity and constant ac- babilit h _To5 051
celeration Kalman—filter kernels proved to be superior toPjOPanliities are chosen as= [ : : ] :
single constant velocity Kalman—filter. There are however . )
some disadvantages in the choice of this model-set. ~ 2-2 Simulation setup

Using filter kernels of different polynomial orders (€.gyne trajectories of the simulation data are derived from the
a model-set containing constant acceleration and constggt, acquired by the INS of a test vehicle. The resulting
velocity models) results in an underestimation of highefyieciories are the natural paths of vehicles driving pi-ty
order parameters (the acceleration) of the combined Stalg scenarios. The measurement vector is composed of the
vector in phases where the dynamic situation is not exaCHlSsition [z,y]" and the yaw anglé». Gaussian noise was
represented by a model. This is almost always true in trafgged to the data with, = o, = 0.1 m ando, = 0.5 rad
fic situations and in particular in traffic jams. We suggegys simulating the measurements of a single Laserscan-
therefore that the model—set should contain only models 9f ot 10 Hz scan frequency. The measurement interval is
the same order, if higher order parameters are of interest §@)g ms.

instance for a controller. As an example, consider an IMM

with a constant velocity and a constant acceleration filt rq Turning

kernel. If the observed object drives at constant speed with

short weak acceleration intervals, the model probability &igure 7 shows the estimated yaw anglef a turning car.

the constant acceleration model is never very high. There-

fore, the mixed estimate of the acceleration parameter 2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

always an underestimation of the true acceleration, ever & l/vf

the constant acceleration model has low estimation error = 1
Additionally, the above presented examples only shc s s 100 10 120 10 10 150 160 170 180

the performance in the longitudinal direction. The perfoz *'[ =

mance of the lateral estimation could not be determinn%o-ost

=
based on real measurements, due to the lack of a full n® ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
80 90 100 110 120 130 140 150 160 170 180

erence trajectory. In simulations it can be shown that tl ;|

i . . ——— —
lateral estimate of the investigated model—set perfornils w -
in traffic—jams on highways. However, in urban areas, ce ~ ™| . |
may turn abruptly at crossings. This dynamic situation ce = os==s===a=" == cooooaoocl iseoeoo
be better represented by coordinated turn models or tiic fme 51101
above mentioned bicycle models. _ ~ Fig. 7: Yaw angle), RMS(y) and model probabilities.
Based on these criterions a new model-set is designed,
based on the bicycle model. The yaw angle is well estimated and the mean—RMS of

500 Monte—Carlo runs in the non—-maneuver phase is of the

5.1 Model-set parameters order of% of the measurement noise. This high noise re-

Two white noise constant acceleration bicycle models a§ction of the yaw measurements can be explained by the

chosen. _ kinematic restrictions of the dynamic model and the rela-
The first model of constant acceleration has a low modglely low noise in the position measurements. Even the

noise with standard deviations of peak—RMS 0f0.067 rad is low. The model probabilities
o, =043 (30) show that the probability of the second model raises in

rad phases of transition between straight driving and turning.
0w =0.1 55" (31) However the increase in the model probability is not very

This model is designed to fit phases of constant acceleratiigih, as the transition is itself blurred over time. The first

and constant turning. model is therefore able to cope with this weak violation
The second model of constant acceleration has a highthe model assumptions. In the following paragraphs it
model noise with standard deviations of will be shown that the increase in probability of the second

m model is proportional to the extent of the violation of the
0a =12.0 5 (32) dynamic model assumptions. Figure 8 shows the estimated
0w =2.6 ’“S"—Qd (33) yaw rate of the turning car.



0.4

031

0.2r

W [rad/sz]

011

, , , ;
130 140 150 160 170
time [s/10] 0 50

L L L
80 90 100 110 120

100
time [s/10]

Fig. 8: Estimated yaw rate. . N . L
9 y Fig. 11: Mean estimation error and its standard deviation of

5.4 Strong acceleration changes the velocity estimate.

Figure 9 shows the estimated velocityand acceleration Kalman—filter kernel with the high model noise. The gen-
a of a vehicle which accelerates and then directly brakesral noise reduction is therefore satisfactory. Only atdia
The gear change from first to second gear can be notediah times when the assumptions of the dynamic model are
measurement intervals 80—85. The model probabilities arielated, does the noise reduction decrease.

20

5.5 Extreme turning scenarios

| Figure 12 shows the estimated yaw anglef a car per-
forming extreme right followed fast by extreme left turns.
The yaw angle is well estimated and the mean—-RMS of 500
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Y [rad]
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o
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0

Fig. 9: Estimated velocity and the estimated acceleratior 50

a. time [s/10]

250

shown in figure 10. Again the probability of the secondFIg' 12: Yaw anglep, RMS(y) and model probabilities.

model rises at strong acceleration changes. Here the IUI] .
crease is highly significant, especially at the transitiomf qnte—CarIo runs is of the ordgr q% of the measurement
' noise. The peak—RMS 6£3 rad is high, though still below

the acceleration to the deceleration phase when the Chaﬁ%emeasurement noise. The model probabilities show that

in acceleration is of a magnitude of 12 /s the second model takes over in phases of transition between
the left and right turning. Figure 13 shows the estimated
yaw rate.
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Fig. 10: Model probabilities.
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The standard deviation of 500 Monte—Carlo runs in fig- fime [s10)
ure 11 exhibits a good noise reduction. However, the mean
estimation erroe, (k) = E{v(k) — 0(k)} of the velocity
estimate has a maximum of 1.05 m/s. The mean estimation
error is a quant|tat|v¢ cr|ter|or_1 for the performance of th§.6 Conclusion for simulations
filter in highly dynamic scenarios.

The standard deviation, (k) = E{[i(k) — E{0}]2}z of These simulations show that the chosen two model IMM
the estimation error is a quantitative criterion for theseoi with underlying bicycle models performs well in longitudi-
reduction ability of the filter. In non—-maneuver phases thelly and laterally challenging driving scenarios. Thetfirs
standard deviation is in the magnitude of 0.2 m/s. In timé&alman—filter is designed for scenarios of almost constant
of a transition between different accelerations the stahdacceleration and turning. Small deviations of the assump-
deviation increases up to 0.4 m/s within 3—4 measuremeioin are accounted for by a low model noise. The second
intervals. This increase is due to the high probability & thrKalman—filter kernel is increased in its weight in situation

I I
150 200 250

Fig. 13: Estimated yaw rate.



where the almost constant acceleration and yaw rate af8j
sumption is violated. The weight depends on the extent
of the violation. The stronger the acceleration or yaw rate
changes, the higher is the estimated probability of the sec-
ond model with high model noise. This two Kalman-filter
based IMM implementation therefore exhibits a good nois¢9]
reduction in normal driving situations and at the same time
a high flexibility in highly dynamic lateral and longitudiha
scenarios. [10]

6 Conclusion

[11]
A systematic parametrisation of the IMM approach based
on the analysis of Stop&Go situations is presented. In sit-
uations of high dynamics, the IMM method is able to req 5,
duce the estimation errors significantly compared to single
Kalman-filter approaches, due to its situation adaptive dy-
namic estimation. The performance was evaluated and opti-
mised in simulations and presented with real measurem
of two laserscanners, a radar and an image processing unit.
Future work could use the probabilities of the different dy-
namic models for a situation analysis. This can for instanfﬁ]
enable the detection of traffic jams or lane changes.
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