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Abstract – Classical vehicle tracking approaches for highway
scenarios use a Kalman–filter with a single dynamic model opti-
mised to a single driving manoeuvre. In contrast, the Interacting
Multiple Model (IMM) filter allows for several parallel models
which are combined to a weighted estimate. Choosing models for
different driving modes such as constant speed, acceleration and
strong acceleration changes permits the object state estimation to
be optimised for highly dynamic driving manoeuvres. The paper
describes the analysis of Stop&Go situations and the systematic
parametrisation of the IMM method based on these statistics. The
evaluation of the IMM approach is presented based on real sensor
measurements of two laserscanners, a radar and a video image
processing unit. The performance of the lateral estimationof the
IMM is shown based on simulations.

Keywords: Driver assistance systems, IMM, model–set design,
traffic jam situations.

1 Introduction

Future driver assistance systems have increasing demand
for a consistent and precise dynamic representation of the
environment. The model based estimation of the dynamic
parameters which describe the objects position, velocity
and acceleration is of particular interest. Numerous publi-
cations describe object tracking approaches using a Kalman
filter with linear dynamic models [1, 2, 3, 4]. Some ap-
proaches use non–linear models and are therefore based on
an Extended Kalman filter [5]. All of these approaches,
however, try to represent the dynamic behaviour of traffic
participants by the use of a single general dynamic model.
As the dynamic state of vehicles is highly variable over
time, the general dynamic model has to meet the condi-
tions of the most extreme situations as otherwise the filter
is bound to be inconsistent in scenarios with high dynamic
changes.

Recent research in the area of driver assistance systems
takes multiple model approaches into account. Each model
is designed to represent a certain mode or dynamic driving
behaviour of an object. The aim is a situation adaptive esti-
mation. In [6] the different models are switched depending
on the actual dynamic situation. Problems are described
concerning the tradeoff between switching delays and too
frequent switches. Other approaches use the IMM filter-
ing which enables a ”soft decision”. The final estimate is a

weighted sum of several filter estimates which are based on
different dynamic models [7, 8, 9].

This paper first describes the IMM algorithm. In sec-
tion 3 the dynamic models and their parametrisation as well
as the parametrisation of the IMM method based on the
analysis of Stop&Go scenarios are systematically derived.
The performance of the IMM approach is presented in sec-
tion 4 with respect to a single Kalman filter implementation.
Section 5 introduces a second IMM model–set design and
presents its performance based on simulations and section 6
concludes the paper.

2 Interacting Multiple Model
The IMM method is composed of four main parts

• Interaction — the individual filter estimates are mixed
with respect to the predicted model probabilities.

• Model specific filtering — each filter predicts and up-
dates its state estimate using its dynamic model as-
sumptions.

• Model probability update — the model probability of
each model is updated with respect to the innovation
error.

• Combination — for output purposes a combined state
estimate is calculated from the weighted state esti-
mates.

Following [10, 11, 12] the IMM algorithm is summarised
below.

2.1 Interaction
The predicted model probability is given with the model
probability of the previous cycleµ(j)

k−1|k−1 andπji which
is the probability that the transition from statej to statei
occurs

µ
(i)
k|k−1 =

∑

j

πjiµ
(j)
k−1|k−1 (1)

With the conditional model probability, given the object is
in state i that the transition occurred from state j

µ
(j|i)
k−1|k−1 =

πjiµ
(j)
k−1|k−1

µ
(i)
k|k−1

(2)



the mixing of the state estimateŝx(j)
k−1|k−1 with their co-

variancesP(j)
k−1|k−1 can be performed
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The probabilitiesπji that the transition from statej to state
i occurs, are a design parameter of the IMM method. They
are motivated by a Markovian switching process and will
be discussed in section 3.3.

2.2 Model specific filtering

The predicted state estimatesx̂
(i)
k|k−1 and their covariances

P
(i)
k|k−1 are calculated in our approach using an Extended

Kalman filter. The different model assumptions will be dis-
cussed in section 3.1. The innovation is performed by cal-
culation of the measurement residuals

(i)
k , the residual co-

varianceS(i)
k , the updated state estimatex̂

(i)
k|k and its covari-

anceP(i)
k|k.

2.3 Model probability update

The likelihood for the observation is calculated from the
residuals(i)

k assuming Gaussian statistics

L
(i)
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exp [−(1/2)(s
(i)
k )′(S
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|2πS
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Thus, the predicted model probabilitiesµ(i)
k|k−1 are updated

µ
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2.4 Combination

The overall state estimatêxk|k and its covariancePk|k are

a weighted combination of the model state estimatesx̂
(i)
k|k

and their covariancesP(i)
k|k

x̂k|k =
∑

i µ
(i)
k x̂

(i)
k|k (7)
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3 Model–set design

In order to focus on the examination of the IMM filter per-
formance, we concentrated on Stop&Go driving situations.
Extended data from the Inertial Navigation System (INS)
of motorway traffic jams was analysed concerning the ve-
locity, acceleration and yaw rate in order to determine the
different driving modi. From those, the models of the IMM
model–set were derived.

Figure 1 shows the velocity in a Stop&Go situation.
The sequence is divided into sections of almost constant

Fig. 1: Analysis of a Stop&Go situation.

dynamic behaviour. For the longitudinal dynamics four
classes are considered: stationary (S), constant velocity
(CV), constant acceleration (CA) and a class representing a
maneuver change. The lateral dynamics are separated into
constant yaw angleψ (CP) and varying yaw angle.

In order to prevent a too frequent switching between the
states, slight deviations from the dynamic constraints areal-
lowed. The degree of deviation is determined by the choice
of the model noise.

3.1 Dynamic Models

The dynamic modelling of the Extended Kalman–filter ker-
nels used in the IMM method determines the constraints of
the dynamic process. Two different general model groups
are considered. The free motion model and the bicycle
model. In the case of the latter model the motion is di-
rected into the objects orientation neglecting the slip of the
wheels.

3.1.1 Free motion model

The dynamic state of the constant acceleration model is
given byxCA = [x, y, ψ, vx, vy, ax, ay]

′ where [x, y]′ is
the position,ψ the yaw angle,[vx, vy]′ the velocity vector
and[ax, ay]

′ the acceleration vector.
For the model of constant acceleration the dynamics are

given by
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wherenψ, nax
andnay

are white noise terms which ac-
count for the errors made by the model assumption of con-
stant acceleration and constant yaw angle.

The state vector of the constant velocity model isxCV =
[x, y, ψ, vx, vy, ax = 0, ay = 0]′. The differential equation
describing the constant velocity model is given by

ẋCV =
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(10)

wherenvx
andnvy

are white noise terms which account for
the errors made by the constant velocity assumption.



The state vector of the stationary model isxS =
[x, y, ψ, vx = 0, vy = 0, ax = 0, ay = 0]′. The differential
equation describing the stationary model is given by

ẋS =
[

nx ny nψ 0 0 0 0
]′

(11)

wherenx andny are white noise terms which account for
the errors made by the model assumption.

3.1.2 Simplified bicycle model

The dynamic state of the model is given byx =
[x, y, ψ, v, ω, a]′ where[x, y] is the position,ψ the yaw an-
gle, v the velocity,ω the yaw rate anda the acceleration.
The orientation of the velocity and acceleration vectors are
here defined by the yaw angle as shown in figure 2.

Fig. 2: Simplified bicycle model of the kinematic behaviour
of a vehicle. The orientation of the velocity and accelera-
tion vectors are defined by the yaw angleψ and yaw rate
ω.

The differential equation describing a constant accelera-
tion and constant yaw rate is approximated by

ẋV CA =
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Note that the influence of the yaw rateω on the position
is neglected.na andnω are white noise terms which ac-
count for the errors made by the constant acceleration and
constant yaw rate assumption.

The differential equation describing a constant velocity
and constant yaw angle is

ẋV CV =
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(13)

wherenv andnψ are white noise terms which account for
the errors made by the constant velocity and constant yaw
angle assumption.

The equation describing the stationary model is equal to
the free motion stationary model

ẋV S = ẋS (14)

3.2 Model noise covariance

The model noise covariance matrixQk at timek is calcu-
lated using the direct discrete white noise approach, where
Γ is the noise gain andσ2 the variance of the process noise
[10]

Qk = Γkσ
2Γ′

k (15)

A first estimation of the standard deviation of the model
noiseσ is given by the allowed deviation in the labelling
process described above. In order to find the optimal noise
level, sequences of measurements are chosen which meet
the different model assumptions. Using hypothesis testing
techniques the process noise can be optimised with respect
to peak–RMS errors and mean–RMS errors.

3.3 Markov transition probability matrix

The diagonal elements of the transition matrix represent the
probability that the object remains in modei. Following
[11] they are related to the mean sojourn times (τi) and the
sampling intervalT

πii = 1 −
T

τi
(16)

The mean sojourn time as well as the off–diagonal elements
are derived from the statistics of the above mentioned ana-
lysis of the Stop&Go scenario. Ifnij is the counted number
of transitions from modei to modej andni is the sum of
all transitions from modei, the transition probabilities are
given by

πij =
nij
ni

(1 − πii) (17)

4 Results based on Real Measurements

4.1 Experimental setup and system architecture

The experimental setup for evaluation of different IMM
implementations is composed of two test vehicles. The
ego–vehicle is equipped with an Inertial Navigation System
(INS), a GPS sensor and several forward looking sensors.

Two infrared Laserscanners are mounted at the left and
right side of the front bumper, thus covering the region left,
right and in front of the ego–vehicle. The object recogni-
tion range is up to 60 m. The pre–processed measurements
which are delivered to the fusion system are a three point
contour description of the detected objects.

A 77 GHz long range radar measures the relative position
and radial velocity of objects. The field of view is limited
to 6◦ azimuth angle and 120 m distance.

Additionally a monocular vision system, mounted be-
hind the frontal windscreen, detects vehicles and estimates
the lane position and curvature. The horizontal aperture is
22◦ and the detection range up to 70 m.

The target–vehicle is equipped with an INS which mea-
sures the vehicles dynamic state and with a GPS sensor in
order to synchronise the sensor measurements with the ego–
vehicle.



The IMM algorithm is integrated into a centralised
event–triggered sensor fusion architecture described in
[13]. The measurements are chronologically ordered, thus
introducing an additional delay, which can in turn be mini-
mized if the sensor measurement times are predictable [14].
The performance is evaluated using predefined driving ma-
neuvers.

4.2 Model–set parameters

For highway scenarios the free motion models described in
section 3.1.1 performed better than the bicycle models de-
scribed in section 3.1.2. For traffic jam situations a model–
set composed of three models was found to be suitable.

The first model is a stationary model where the standard
deviation of the noise in the position estimate is

σx = σy = 0.32
m

s
(18)

The noise in the yaw angle is given by

σψ = 0.04
rad

s
(19)

The constant velocity model is parametrised with

σvx = σvy = 0.89 m
s2 (20)

σψ = 0.12 rad
s (21)

The model of constant acceleration has a high model noise
with standard deviations of

σax = 8.0 m
s3 (22)

σay = 2.0 m
s3 (23)

σψ = 0.25 rad
s (24)

This model is designed to fit phases of constant acceleration
and acceleration changes, as well as lane changes.

The Markov matrixP(T ) is determined from the statis-
tics of traffic jam situations:

P(0.1 sec) =





0.980 0.000 0.020
0.000 0.970 0.030
0.003 0.017 0.980



 (25)

The transition probabilities are adapted in each cycle with
respect to the actual sampling interval. The initial model
probabilities are chosen as

µ =
[

0.333 0.333 0.334
]′

(26)

The IMM based on this model–set is compared to a sin-
gle constant velocity Kalman–filter with

σvx = 2.0 m
s2 (27)

σvy = 0.2 m
s2 (28)

σψ = 2.0 rad
s (29)

4.3 Strong acceleration changes

In Stop&Go conditions, potentially very harmful situations
occur at the end of traffic jams. Cars driving at high speed
suddenly start breaking or even worse, have to brake from
an acceleration phase.

In figure 3 such a driving maneuver is shown. The true
velocity vt recorded from the target–vehicle exhibits the
strong acceleration and then strong deceleration behaviour.
The error in the estimated velocityve of the target–vehicle
observed from the ego–vehicle is shown below. As ex-
pected, the estimation error of a single constant velocity
Kalman–filter is high at acceleration phases as the model
assumption does not meet the dynamics of the situation.
The IMM method switches from the stationary to the con-
stant acceleration model within few sampling intervals.
Once the acceleration is finished the model probability for
the model of constant velocity increases. However, as soon
as the deceleration process starts the constant acceleration
model again gains the highest probability. Thus, the IMM
approach reduces the estimation error significantly in accel-
eration phases compared to the single Kalman–filter imple-
mentation.

Figure 4 shows the estimated standard deviation of the
velocityσv. The uncertainties in the estimation are almost
constant for the Kalman–filter of constant velocity. The es-
timated standard deviation of the IMM method, however,
exhibits a strong variation. In phases of no motion, the
uncertainties are quite low and as soon as the accelera-
tion begins the standard deviation increases. This situation
adaptive uncertainty in the estimation process is an impor-
tant feature of the IMM approach as in tracking systems
the measurement association gate depends on the estimated
standard deviation. If the uncertainty is estimated too low,
the object might be lost. However, using an IMM approach,
the estimated standard deviation can be adapted to the driv-
ing situation. In our case, the standard deviation raises in
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Fig. 3: Velocityvt recorded in target–vehicle. Errors in es-
timated velocityve of single a Kalman–filter (CV) (dashed
red) and of the IMM method (solid green). Model probabil-
itiesµ of IMM: Stationary (dotted blue), Constant velocity
(solid green), constant acceleration (dashed red).
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Fig. 4: Errors in estimated velocityve of single Kalman–
filter (CV) (dashed red) and of IMM (solid green). Esti-
mated standard deviation of velocityσv. NEES of velocity
normalized to its 95% probability region.

phases of high dynamics. Therefore the association gate is
enlarged and the object is more likely to be continuously
tracked.

The normalised estimation error squared (NEES) ex-
presses the filter consistency [10]. Figure 4 shows the
NEES of the velocity estimate normalized to a 95% prob-
ability region, assuming aχ2 distribution. The normalized
NEES of the single Kalman–filter is most of the time above
1.0, i.e. the estimated filter uncertainty is not consistent
with the true estimation error considering the 95% probabil-
ity region. Conversely, the estimation of the IMM method
is consistent during the whole maneuver.

4.4 Stop&Go

Traffic jam situations are characterised by cars driving at
low speed, accelerating, decelerating and stopping. These
different driving maneuvers can change in rapid succession.
In figure 5 such a driving maneuver is shown. The true
velocity vt recorded by the target–vehicle exhibits first a
standstill and an acceleration directly followed by a decel-
eration to a halt. This pattern is repeated twice.

With its four sensors the ego–vehicle measures position
and velocity of the target–vehicle. The error in the esti-
mated velocityve is shown below. The error of the sin-
gle constant velocity Kalman–filter is high during accelera-
tion and deceleration phases. The IMM implementation can
however reduce the error in the acceleration phase after a
short period of adaption. The model probabilitiesµ(i) show
that the IMM method switches at the beginning of accelera-
tion phases from the stationary model to the constant accel-
eration model. As the acceleration is only about2 m

s2 , the
probability of the constant velocity model rises again. This
has the effect that the error reduction of the IMM method
compared to the single Kalman–filter is significant, but not
as high as expected. Using four models, with an additional
model for constant acceleration with very low process noise
did not improve the results, as the switching across the dif-
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Fig. 5: Velocityvt recorded in target–vehicle. Errors in es-
timated velocityve of single a Kalman–filter (CV) (dashed
red) and of the IMM method (solid green). Model probabil-
itiesµ of IMM: Stationary (dotted blue), Constant velocity
(solid green), constant acceleration (dashed red).

ferent models takes too long when compared to the duration
of the maneuver.

Figure 6 shows the estimated standard deviation of the
velocityσv. The uncertainties in estimation are almost con-
stant for the Kalman–filter of constant velocity. The esti-
mated standard deviation of the IMM method however ex-
hibits a strong variation. In phases of standstill, the IMM–
estimated standard deviation is significantly lower com-
pared to that of the Kalman–filter alone. This enables a
noise reduction of more than 50% compared to the single
Kalman–filter. As soon as the acceleration or deceleration
begins the standard deviation of the IMM method increases
again.
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Fig. 6: Errors in estimated velocityve of single Kalman–
filter (CV) (dashed red) and of IMM (solid green). Esti-
mated standard deviation of velocityσv. NEES of velocity
normalized to its 95% probability region.

The normalized NEES of the single Kalman–filter is in
phases of acceleration most of the time above 1.0, i.e. the



estimated filter uncertainty is not consistent with the true
estimation error considering the 95% probability region. In
contrast the IMM–estimation is consistent during almost
the whole maneuver. Exceptions are at the beginning of
the acceleration when the model probability of the acceler-
ation model is still increasing. This is due to the maneuver
detection delay of the IMM approach.

5 Results based on simulations
The above shown performance of the IMM using three
models with stationary, constant velocity and constant ac-
celeration Kalman–filter kernels proved to be superior to a
single constant velocity Kalman–filter. There are however
some disadvantages in the choice of this model–set.

Using filter kernels of different polynomial orders (e.g.
a model–set containing constant acceleration and constant
velocity models) results in an underestimation of higher
order parameters (the acceleration) of the combined state
vector in phases where the dynamic situation is not exactly
represented by a model. This is almost always true in traf-
fic situations and in particular in traffic jams. We suggest
therefore that the model–set should contain only models of
the same order, if higher order parameters are of interest for
instance for a controller. As an example, consider an IMM
with a constant velocity and a constant acceleration filter
kernel. If the observed object drives at constant speed with
short weak acceleration intervals, the model probability of
the constant acceleration model is never very high. There-
fore, the mixed estimate of the acceleration parameter is
always an underestimation of the true acceleration, even if
the constant acceleration model has low estimation errors.

Additionally, the above presented examples only show
the performance in the longitudinal direction. The perfor-
mance of the lateral estimation could not be determined
based on real measurements, due to the lack of a full ref-
erence trajectory. In simulations it can be shown that the
lateral estimate of the investigated model–set performs well
in traffic–jams on highways. However, in urban areas, cars
may turn abruptly at crossings. This dynamic situation can
be better represented by coordinated turn models or the
above mentioned bicycle models.

Based on these criterions a new model–set is designed,
based on the bicycle model.

5.1 Model–set parameters
Two white noise constant acceleration bicycle models are
chosen.

The first model of constant acceleration has a low model
noise with standard deviations of

σa = 0.4 m
s3 (30)

σω = 0.1 rad
s2 (31)

This model is designed to fit phases of constant acceleration
and constant turning.

The second model of constant acceleration has a high
model noise with standard deviations of

σa = 12.0 m
s3 (32)

σω = 2.6 rad
s2 (33)

This model is designed to fit phases of acceleration
changes, lane changes and transitions from straight driving
to turning at a crossing.

The Markov matrixP(T ) is determined from the statis-
tics of traffic jam situations:

P(0.1 sec) =

[

0.97 0.03
0.05 0.95

]

(34)

The transition probabilities are adapted in each cycle with
respect to the actual sampling interval. The initial model
probabilities are chosen asµ =

[

0.5 0.5
]′

.

5.2 Simulation setup

The trajectories of the simulation data are derived from the
data acquired by the INS of a test vehicle. The resulting
trajectories are the natural paths of vehicles driving in typi-
cal scenarios. The measurement vector is composed of the
position [x, y]′ and the yaw angleψ. Gaussian noise was
added to the data withσx = σy = 0.1 m andσψ = 0.5 rad,
thus simulating the measurements of a single Laserscan-
ner at 10 Hz scan frequency. The measurement interval is
100 ms.

5.3 Turning

Figure 7 shows the estimated yaw angleψ of a turning car.
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Fig. 7: Yaw angleψ, RMS(ψ) and model probabilities.

The yaw angle is well estimated and the mean–RMS of
500 Monte–Carlo runs in the non–maneuver phase is of the
order of 1

25 of the measurement noise. This high noise re-
duction of the yaw measurements can be explained by the
kinematic restrictions of the dynamic model and the rela-
tively low noise in the position measurements. Even the
peak–RMS of0.067 rad is low. The model probabilities
show that the probability of the second model raises in
phases of transition between straight driving and turning.
However the increase in the model probability is not very
high, as the transition is itself blurred over time. The first
model is therefore able to cope with this weak violation
of the model assumptions. In the following paragraphs it
will be shown that the increase in probability of the second
model is proportional to the extent of the violation of the
dynamic model assumptions. Figure 8 shows the estimated
yaw rate of the turning car.
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Fig. 8: Estimated yaw rateω.

5.4 Strong acceleration changes

Figure 9 shows the estimated velocityv and acceleration
a of a vehicle which accelerates and then directly brakes.
The gear change from first to second gear can be noted at
measurement intervals 80–85. The model probabilities are
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Fig. 9: Estimated velocityv and the estimated acceleration
a.

shown in figure 10. Again the probability of the second
model rises at strong acceleration changes. Here the in-
crease is highly significant, especially at the transition from
the acceleration to the deceleration phase when the change
in acceleration is of a magnitude of 12 m/s3.
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Fig. 10: Model probabilities.

The standard deviation of 500 Monte–Carlo runs in fig-
ure 11 exhibits a good noise reduction. However, the mean
estimation errorev(k) = E{v(k) − v̂(k)} of the velocity
estimate has a maximum of 1.05 m/s. The mean estimation
error is a quantitative criterion for the performance of the
filter in highly dynamic scenarios.

The standard deviationσv(k) = E{[v̂(k)−E{v̂}]2}
1

2 of
the estimation error is a quantitative criterion for the noise
reduction ability of the filter. In non–maneuver phases the
standard deviation is in the magnitude of 0.2 m/s. In times
of a transition between different accelerations the standard
deviation increases up to 0.4 m/s within 3–4 measurement
intervals. This increase is due to the high probability of the
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Fig. 11: Mean estimation error and its standard deviation of
the velocity estimatev.

Kalman–filter kernel with the high model noise. The gen-
eral noise reduction is therefore satisfactory. Only at transi-
tion times when the assumptions of the dynamic model are
violated, does the noise reduction decrease.

5.5 Extreme turning scenarios

Figure 12 shows the estimated yaw angleψ of a car per-
forming extreme right followed fast by extreme left turns.
The yaw angle is well estimated and the mean–RMS of 500
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Fig. 12: Yaw angleψ, RMS(ψ) and model probabilities.

Monte–Carlo runs is of the order of110 of the measurement
noise. The peak–RMS of0.3 rad is high, though still below
the measurement noise. The model probabilities show that
the second model takes over in phases of transition between
the left and right turning. Figure 13 shows the estimated
yaw rate.
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Fig. 13: Estimated yaw rateω.

5.6 Conclusion for simulations

These simulations show that the chosen two model IMM
with underlying bicycle models performs well in longitudi-
nally and laterally challenging driving scenarios. The first
Kalman–filter is designed for scenarios of almost constant
acceleration and turning. Small deviations of the assump-
tion are accounted for by a low model noise. The second
Kalman–filter kernel is increased in its weight in situations



where the almost constant acceleration and yaw rate as-
sumption is violated. The weight depends on the extent
of the violation. The stronger the acceleration or yaw rate
changes, the higher is the estimated probability of the sec-
ond model with high model noise. This two Kalman–filter
based IMM implementation therefore exhibits a good noise
reduction in normal driving situations and at the same time
a high flexibility in highly dynamic lateral and longitudinal
scenarios.

6 Conclusion

A systematic parametrisation of the IMM approach based
on the analysis of Stop&Go situations is presented. In sit-
uations of high dynamics, the IMM method is able to re-
duce the estimation errors significantly compared to single
Kalman–filter approaches, due to its situation adaptive dy-
namic estimation. The performance was evaluated and opti-
mised in simulations and presented with real measurements
of two laserscanners, a radar and an image processing unit.
Future work could use the probabilities of the different dy-
namic models for a situation analysis. This can for instance
enable the detection of traffic jams or lane changes.
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