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Abstract – We present in this article a method to track and esti-
mate the 3D motion of an object of geometry given, by fusing in-
formations from reflectance and range image sequences. This top-
down approach uses a dense modelling of the object to be tracked.
The fusion of measurement and the estimation are carried out by
a global particle filter, of which interest is to process efficiently the
non-linearities of the state equations. To illustrate the subject, the
method is applied to synthetic and real image sequences.
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1 Introduction
In the field of computer vision, tracking and motion esti-
mation of 3D objects take on a significant place. That it is
in robotics, in transport or in the military domain, a lot of
applications requires an accurate knowledge of localization
and motion of the objects in the scene. Many works were
carried out on the subject, from which emerge 3 classes
of methods. Feature-based methods [1] aim at extracting
characteristics such as points, line segments from image se-
quences, tracking stage is then ensured by a matching pro-
cedure at every time instant. Differential methods are based
on the optical flow computation, i.e. on the apparent motion
in image sequences, under some regularization assumptions
[2, 3]. The third class use the correlation to measure inter-
images displacements [4, 5]. These classes has advantages
and drawbacks which are related to the applicative context.
The method presented in this paper is based on a 3D model
of the object to be tracked, and can directly use the images
delivered by the sensors. Another interest lies in the mo-
tion modelling. Indeed, a feature extracted from an image,
a point for example, will have a displacement model often
more complex than the object which is part of. In addition
the occlusion phenomena are in this case more difficult to
deal with. All these points are detailed in [6]. The origin of
the model-based approaches can be found in [7] and some
similar work in [8, 9].
The solution relies on a state modelling of the problem,
which is strongly non-linear. In many works, the extended
Kalman filter is used to track and estimate the motion of the
features from image sequences [10]. The EKF linearizes
the state equations to obtain a model that is locally linear.
This linearization stage may give rise to instability prob-
lems. For this reason, we use the particle filtering [11] to

solve this non-linear estimation problem. The advantage of
this filter lies in its ability to deal with non-linear models.
Similar approaches exist, known as the Bootstrap filtering
[12] and Condensation algorithm [13].
This article details the most significant aspects of the pro-
posed solution. Section 2 gives an overview of the prob-
lem and the adopted solution. Section 3 describes the state
modelling of the problem. Section 4 introduces the particle
filtering and section 5 validates our approach on synthetic
and real data.

2 Overview
Previous works [14, 15] that directly use the greyscale lev-
els have been developped for 2D objects in a monocular
image sequence to estimate the position of the object. We
focused now on the tracking of a 3D object in the scene and
its 3D motion estimation using a range camera. This active
vision device delivers, at each time, depth and reflectance
(intensity) images. The depth measures associate each pixel
with a measurement of the camera-object distance and the
reflectance images provide a measurement based on the am-
plitude of the beam reflected by the scene.
To solve this estimation problem, we develop a particle fil-
ter, which allows a natural processing of the non lineari-
ties of the state model. We also use a centralized fusion
structure, since it guarantees the optimality of the process-
ing [16].
This model based is a top-down method : one use ana pri-
ori shape modelling of the object of his form which can thus
be directly compared with the images delivered by the sen-
sor. It also avoids any pre-processing stages that may gen-
erate additionnal localisation errors. This process requires
a dense representation of the object for the sensor. To this
end, we use a CAD model of the object and a 3D rendering
engine which project the model in the image plane, for all
position and orientation. Figure 1 presents, as an example,
the model of the vehicle used for the synthetic sequence and
its wireframe representation.

3 3D Modelling
The proposed solution relies on a 3D state modelling. Then
the problem is summarized with a set of equations which
describe the way the system evolves and the way it is mea-
sured by the sensors.



Fig. 1: Solid and wireframe representation of the 3D syn-
thetic model of the car

3.1 Object modelling

Our approach uses a 3D rigid model of the object, defined
by its geometry, which can be built using a 3D modeller for
instance. This model is defined in a local reference frame,
whose origin corresponds to the center of gravity of the ob-
ject. It has 6 degrees of freedom : three translation parame-
ters and three rotation parameters. The tracking stage leads
to determinate the pose of the object [17]. It consists in
finding the transformation (translation/rotation) of the ob-
ject’s coordinates between the local reference frame and the
reference frame of the 3D sensor.
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Fig. 2: 3D object model in the local reference frame

The state vector is composed by the pose and motion pa-
rameters:

Ωt = [XtYtZtθ
X
t θY

t θZ
t TX

t TY
t TZ

t V θX

t V θY

t V θZ

t ]T (1)

• Xt, Yt, Zt are the coordinates of the center of gravity
in the sensor reference frame;

• θX
t , θY

t , θZ
t are the Euler angles which represent the

object orientation;

• TX
t , TY

t , TZ
t are the coordinates of the translation vec-

tor;

• V θX

t , V θY

t , V θZ

t are angular speed of the object.

3.2 Dynamics equations

The dynamics equations, expressed in matrix form can be
written as follows:

Ωt+1 = FΩt + Wt (2)

• Ωt is the state vector of the object

• F is the system’s flow. The object evolves according
to a rigid (translation/rotation) motion:

F =
[

I6X6 I6X6

06X6 I6X6

]
(3)

• Wt is an additive white Gaussian noise with zero mean
and covarianceQt.

3.3 Observation equations

The measurement equations for the intensity and range im-
ages are:

ZI
t+1 = hI(Ωt+1) + V I

t+1

ZR
t+1 = hR(Ωt+1) + V R

t+1

(4)

• hI andhR are non-linear functions which link the ob-
ject model (appearence and position) to the intensity
and range pixels in the images;

• ZI
t+1 andZR

t+1 are the intensity and range measures,
respectively;

• V I
t+1 andV R

t+1 are additive white Gaussian noises with
meansµI and µR, and covariancesRI and RR, re-
spectively.

4 Particle estimation

The state equations show clearly the non-linear aspect of
the problem. It is known that the usual estimation method
(the Extended Kalman Filter) is not optimal in this case
since it linearizes these equations. Moreover, it cannot en-
sure the stability and the convergence of the solution. The
proposed method relies on the particle approach.

The basic principle of the particle method is to develop
an approximation of the probability density function of the
state vector conditionnaly to the available measures, solu-
tion of the estimation problem, by random particles. The
limitation of this method lies in the finite numberN of par-
ticles. Convergence results can be found in [18, 19], for
instance.

4.1 Dynamic estimation of Markov processes

We shall deal here with discrete-time Markov processes that
arise from dynamical models of the type:

Xt+1 = Ft+1(Xt, πt+1)
Yt+1 = Ht+1(Xt+1) + vt+1

(5)

whereFt+1 andHt+1 are non-linear functions andπt+1,
vt are independent noise sequences.

The optimal estimatorX̂t|t (in the minimum mean
square error sense) ofXt, from the knowledge ofY t

0 =
{Y0, ... , Yt}, may be written in compact form:

X̂t|t = E [Xt|Y t
0 ]

=
∫

Xt
0
XtP (Xt

0|Y t
0 )dXt

0

=
∫

Xt
XtP (Xt|Y t

0 )dXt

(6)



The construction of the estimator lies in the knowledge
of the probability density functionP (Xt|Y t

0 ) of the state
vector conditional to the observations.

Using Bayes rule and the Chapman-Kolmogorov equa-
tion, one gets a decomposition of the probability density
function [20]:

P (Xt|Y t
0 ) =∫

Xt−1
0

t∏
τ=1

P (Xτ |Xτ−1)P (X0)
t∏

τ=1

P (Yτ |Xτ )dXτ−1
0

∫

Xt
0

t∏
τ=1

P (Xτ |Xτ−1)P (X0)
t∏

τ=1

P (Yτ |Xτ )dXτ
0

(7)
So the solution of Markov processes filteringP (Xt|Y t

0 )
is based on two probability density functions:

• the transition lawP (Xτ |Xτ−1) from the stateXτ−1

at timeτ − 1 to the stateXτ at timeτ ;

• the observation lawP (Yτ |Xτ ) which is linked to the
measurement equation.

4.2 Basic particle procedure [18]

The basic particle method uses a probability space rep-
resentation withN Dirac measures (particles) whose
supportsXi

t and weightspi
t are conditioned by the mea-

surements.

The basic particle approach to the filtering problem can
be summarized into four points:

1. Filter initialization: Each particleXi
0 is initialized ac-

cording to a random sampling of thea priori law
P (X0). The initial weightspi

0 are set to 1
N (where

N is the number of particles);

2. Evolution: The particles(Xi
t)i={1,...,N} evolve in the

state space according to the system’s stochastic flow,
through the generation of N random sequences of in-
dependentπi

t+1 with law P(πt+1);

Xi
t+1 = Ft+1(Xi

t , π
i
t+1) (8)

3. Weighting: The above evolution is followed by a
weighting stage, in which the normalized weights pi

t+1

must be corrected by the measures available at time
t + 1, according to Bayes’ rule:

pi
t+1 =

P (Yt+1|Xi
t+1)

N∑

j=1

P (Yt+1|Xj
t+1)

pi
t (9)

Under the common assumption of noise vector inde-
pendence, the weights in the multisensor framework
can be computed as follows:

pi
t+1 =

M∏
m=1

P (Y m
t+1|Xi

t+1)

N∑

j=1

M∏
m=1

P (Y m
t+1|Xj

t+1)

pi
t (10)

4. Estimation: The particle estimation is the weighted
sum of the particlesXi:

X̂t+1|t+1 =
N∑

i=1

pi
t+1X

i
t+1 (11)

For a dynamical processing, parts 2,3 and 4 must be
time-iterated.

One can represent (fig. 3) the discretization using the par-
ticle method of the probability density functionP (Xt|Y t

0 )
of the state vector conditional to the observations. This fig-
ure depicts the basic evolution/weighting procedure where
the particles are represented as Dirac measures. The evolu-
tion of each particle in the state space (shown in dot line)
is done according to eq. 8. At each time, the weights are
computed using equation 9. The magnitude of the Dirac
measures (fig. 3) is related to the weight of the particle.
Finally, the weighted Dirac comb represents a ”particle dis-
cretization” of the probability density functionP (Xt|Y t

0 ).

time

Probability

Fig. 3: Evolution of the particle network

4.2.1 Redistribution procedure

It is known that the basic particle procedure does not pre-
vent some of the weights to be low compared to those of
other particles and therefore to poorly contribute to the per-
formance of the estimator (eq. 11). Indeed, the probability
will concentrate on an unique particle and the optimality of
the solution cannot be ensured.

To this end, a redistribution technique may be applied
which is an application of elementary resampling princi-
ple. It consists of redistributing all particles from the ex-
plored positions of the state space, by sampling in accor-
dance to the acquired probability weights. The procedure
allows ”heavy” particles to give birth to more particles at
the expense of ”light” particles which die.



4.3 Rendering process

The computing of the weightspi
t+1 is done according to

the measurements at timet + 1 and their particle-based re-
construction. This reconstruction stage uses the non-linear
transfer functions(hI , hR) to project the 3D model of the
object on each sensor.

In this section, one details the rendering process of the
object, which can be mainly split in two stages:

• Model transformation: the characteristics parameters
of the object must be converted from the local refer-
ence frame to the reference frame of the sensor using
a rigid transformation:




Xc

Yc

Zc

1


 =

(
R3X3 T3X1

01X3 11X1

)



Xm

Ym

Zm

1


 (12)

– (Xm, Ym, Zm) and(Xc, Yc, Zc) are the coordi-
nates of a 3D point respectively in the local and
the sensor-based reference frames;

– R = RθX .RθY .RθZ is the rotation matrix (3x3)
defined by the angular parameters of the state
vector. (Rθi)i={X,Y,Z} are the rotation matrices
for the axisθX , θY , θZ ;

– T = (X, Y, Z)T is the vector composed by the
coordinates of the center of gravity in the sensor-
based reference frame.

• Projection: the transfer function of the sensor is used
to project the 3D object in the image planes (range and
intensity). Two sensor models are more particularly
studied:

1. The following model have been used for the syn-
thetic sequence:

uR,I = αu
Yc
Zc

+ u0

vR,I = αv
Xc
Zc

+ v0

nI(u, v) = f1 (Xc, Yc, Zc)
nR(u, v) = Zc

(13)

2. In the real data case, one uses theOdeticssensor
which can be modelled by [21]:

uR,I = α′utan−1
(

Yc
Zc

)
+ u′0

vR,I = α′vtan−1
(

Xc
Zc

)
+ v′0

+β′vα′utan−1
(

Yc
Zc

)
− β′vu′0

nI(u, v) = f2 (Xc, Yc, Zc)
nR(u, v) =

√
X2

c + Y 2
c + Z2

c )− a0

(14)
Where:

– uR,I , vR,I are the pixel coordinates of the
3D point respectively in the range (R) and
intensity (I) images;

– nR(u, v) andnI(u, v) are the grey levels of
the pixel with coordinatesu, v in the range
and intensity images;

– (αu, u0, αv, v0, βv) and (α′u, u′0, α′v, v′0,
βv, a0) are the intrinsic parameters of the
synthetic andOdeticssensors, respectively;

– f1 et f2 detail the illumination models for
the synthetic and real sequences.

5 Results
The results detailed in the sequel use 10000 particles to pro-
vide an accurate estimation, although the method performs
well with 1000 particles. Concerning the timing for run-
ning this method, it must be noticed that it can be much
improved using hybrid methods such as Kalman particle fil-
tering, for instance. Moreover, it is linked to the polygonal
complexity of the object since the rendering process is done
by the graphic card and to the speed rate between the com-
puter’s memory and the graphic memory. Typically, with-
out any optimization, the algorithm performs in approxi-
mately 7s/frame for the real sequence and 40s/frame for the
synthetic sequence using 10000 particles.

5.1 Synthetic sequence

Fig. 4: Intensity and range images of the synthetic sequence
at t={0, 50, 99}

The method is first applied to a sequence of 100 synthetic
range and intensity images, whose resolution is equal to
256x256 pixels. The tracked object is a vehicle that evolves
according to a rigid motion. Figs. 4 show the images at
the beginning, the middle and the end of the sequence (the
first line shows the intensity images and the bottom line the
range images).

Position Translation Orientation Speed
(rad) (rad/frame)

Errors 0.008 0.006 0.002 0.002

Table 1: Estimation errors for the synthetic sequence

Figs. 5 shows the car tracking results. The wireframe
estimate is displayed on the range and intensity measure-
ments. As it can be seen on Figs. 6, after a short period
of convergence, the algorithm tracks efficiently the vehicle



Fig. 5: Car tracking results at t={0, 20, 40, 60, 80, 99}



and provides an accurate estimation of the 3D motion and
position parameters. Table 1 summarizes the estimation er-
rors in this synthetic case.

5.2 Real sequence

Fig. 7: Intensity and range images of the real sequence at
t={0, 7, 15}

The previous sequence allows an evaluation of the ac-
curacies of the proposed method on synthetic data. In
order to study the robustness of the algorithm, it is now
applied on a real image sequence from the range image
database of the University of South Florida (available at
http://marathon.csee.usf.edu/range/DataBase.html).

This sequence is delivered by anOdeticssensor whose
resolution is 128x128 and composed by 16 images of a
polyhedric object that evolves according to a rigid mo-
tion. The sensor delivers at each time instant, range and
reflectance images. The proposed particle solution fuses
both measurements to track the object in the sequence and
jointly estimate the 3D positions and motion.

Figure 8 shows the tracking results in this case. Despite
the weak image resolution, a motion with high magnitude
(≈ 20◦/frame) and the lack of information concerning the
lighting of the scene, the method allows an efficient track-
ing of the shape (see Figs. 8).

6 Conclusion

In this paper, we proposed a method for object tracking
that jointly estimates its 3D position and motion parameters
by fusing intensity and range images. In this model-based
approach, thea priori information about the shape to be
tracked (as, for instance, part of an image database) avoids
the usual preprocessing stage (token extraction, . . . ) which
leads to an increasing accuracy in the parameters estima-
tion.

This non-linear estimation problem is solved by the par-
ticle filtering due to its ability to deal non-linear models
(dynamics/measurement, statistics). The proposed solution
is then applied to synthetic and real sequences of range and
intensity/reflectance images. More particularly, this method
allows an efficient tracking with weak resolution images
and high magnitude motion together with accurate estima-
tion of 3D position and motion parameters.
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