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Abstract — We present in this article a method to track and estisolve this non-linear estimation problem. The advantage of
mate the 3D motion of an object of geometry given, by fusing ithis filter lies in its ability to deal with non-linear models.
formations from reflectance and range image sequences. This t@gmilar approaches exist, known as the Bootstrap filtering
down approach uses a dense modelling of the object to be track;pz] and Condensation algorithm [13].

h

The fusion of measurement and the estimation are carried out pjis article details the most significant aspects of the pro-
a global particle filter, of which interest is to process efficiently th

non-linearities of the state equations. To illustrate the subject, tllﬁeeorﬁe;ns(?[lhu;ggb Stggtlsor: fl gnlvess ag (:]vg rglewrﬁ)f thihprotb-t
method is applied to synthetic and real image sequences. P olution. Sectio escribes the state

modelling of the problem. Section 4 introduces the particle

Keywords: Object tracking; 3D motion estimation; Sensor fufijtering and section 5 validates our approach on synthetic
sion; Particle filtering and real data

1 Introduction 2 Overview

In the field of computer vision, tracking and motion estiPrevious works [14, 15] that directly use the greyscale lev-
mation of 3D objects take on a significant place. That it &ls have been developped for 2D objects in a monocular
in robotics, in transport or in the military domain, a lot ofmage sequence to estimate the position of the object. We
applications requires an accurate knowledge of localizatifocused now on the tracking of a 3D object in the scene and
and motion of the objects in the scene. Many works weits 3D motion estimation using a range camera. This active
carried out on the subject, from which emerge 3 classeision device delivers, at each time, depth and reflectance
of methods. Feature-based methods [1] aim at extractifigtensity) images. The depth measures associate each pixel
characteristics such as points, line segments from images@h a measurement of the camera-object distance and the
guences, tracking stage is then ensured by a matching peflectance images provide a measurement based on the am-
cedure at every time instant. Differential methods are basglitude of the beam reflected by the scene.

on the optical flow computation, i.e. on the apparent motidro solve this estimation problem, we develop a particle fil-
in image sequences, under some regularization assumpti@rs which allows a natural processing of the non lineari-
[2, 3]. The third class use the correlation to measure intdies of the state model. We also use a centralized fusion
images displacements [4, 5]. These classes has advantagesture, since it guarantees the optimality of the process-
and drawbacks which are related to the applicative conteixtg [16].

The method presented in this paper is based on a 3D moiikis model based is a top-down method : one use pri-

of the object to be tracked, and can directly use the imagas shape modelling of the object of his form which can thus
delivered by the sensors. Another interest lies in the mbe directly compared with the images delivered by the sen-
tion modelling. Indeed, a feature extracted from an imag®or. It also avoids any pre-processing stages that may gen-
a point for example, will have a displacement model oftezrate additionnal localisation errors. This process requires
more complex than the object which is part of. In additioa dense representation of the object for the sensor. To this
the occlusion phenomena are in this case more difficult émd, we use a CAD model of the object and a 3D rendering
deal with. All these points are detailed in [6]. The origin oéngine which project the model in the image plane, for all
the model-based approaches can be found in [7] and sopasition and orientation. Figure 1 presents, as an example,
similar work in [8, 9]. the model of the vehicle used for the synthetic sequence and
The solution relies on a state modelling of the problenits wireframe representation.

which is strongly non-linear. In many works, the extended .

Kalman filter is used to track and estimate the motion of tie 3D Modelling

features from image sequences [10]. The EKF lineariz&€ge proposed solution relies on a 3D state modelling. Then
the state equations to obtain a model that is locally linedéine problem is summarized with a set of equations which
This linearization stage may give rise to instability probdescribe the way the system evolves and the way it is mea-
lems. For this reason, we use the particle filtering [11] ®ured by the sensors.



e F'is the system'’s flow. The object evolves according
to arigid (translation/rotation) motion:
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e 1V, is an additive white Gaussian noise with zero mean
Fig. 1: Solid and wireframe representation of the 3D syn- and covariance€);.
thetic model of the car

. . 3.3 Observation equations
3.1 Object modelling

Our approach uses a 3D rigid model of the object, defin
by its geometry, which can be built using a 3D modeller for
instance. This model is defined in a local reference frame,
whose origin corresponds to the center of gravity of the ob-
ject. It has 6 degrees of freedom : three translation parame-

I R i . N i
ters and three rotation parameters. The tracking stage lead$ h and/* are non-linear functions which link the ob

to determinate the pose of the object [17]. It consists in ject model (appearence and position) to the intensity

finding the transformation (translation/rotation) of the ob- and range pixels in the images;

ject’s coordinates between the local reference frame and thg 7L, and Z£ | are the intensity and range measures,

The measurement equations for the intensity and range im-
es are:
ZtI+1 = hI(QtH) + VtI+1

4
Z{L = W Q) + Vi )

reference frame of the 3D sensor. respectively;
CAHIY e V!, andV;%, are additive white Gaussian noises with
— I R ; I R
meansy” and p't, and covariance®’ and R, re-
spectively.

4 Particle estimation

—6’-’ The state equations show clearly the non-linear aspect of
the problem. It is known that the usual estimation method
(the Extended Kalman Filter) is not optimal in this case
since it linearizes these equations. Moreover, it cannot en-
sure the stability and the convergence of the solution. The
proposed method relies on the particle approach.
The basic principle of the particle method is to develop
Fig. 2: 3D object model in the local reference frame &N approximation of the probability density function of the
state vector conditionnaly to the available measures, solu-
The state vector is composed by the pose and motion *ig_r_l Of the est_imation pr(_)ble_m, by _“"?”dom particles. The
rameters: Imitation of this method lies in the finite numb@f of par-
ticles. Convergence results can be found in [18, 19], for

O = [X, Y, 2,020 0ZTXTY T2V v v )T (1) instance.

o X;,Y;, Z; are the coordinates of the center of gravitd.1 Dynamic estimation of Markov processes

in the sensor reference frame; o )
We shall deal here with discrete-time Markov processes that

e 0X 0Y 07 are the Euler angles which represent tharise from dynamical models of the type:
object orientation;

Xiy1 = Fipa (X, megn)
o TX,TY TZ are the coordinates of the translation vec- Yior = Hp1(Xep1) + v ®)
tor; . .
N . B where F;, 1 and H;; are non-linear functions ang,, 1,
o VI VP VP are angular speed of the object. v are independent noise sequences.
3.2 Dynamics equations The optimal estimator)?ﬂt (in the minimum mean
. . . . uare error sense) of;, from the knowledge oly =
The dynamics equations, expressed in matrix form can . . s
) _ 0, --- » Y1}, may be written in compact form:
written as follows:
_ Xy = E[X|Y{]
Qt+1 =FQ, + W, (2) tft t140
=[xy XeP(XG|YE)dXS (6)

e (), is the state vector of the object Jx, XeP(X:|Y7)d X,



The construction of the estimator lies in the knowledge

of the probability density functioP(X,|Y{) of the state M ,
vector conditional to the observations. 11 Povizlxi)
_ Using Bayes rule and the_z _Chapman-KoImogc_)rov equa- P§+1 = 1\;”=]1u . (10)
tion, one gets a decomposition of the probability density S
function [20]: 2; Hlp(Yt+1|Xt+1)
j=1m=
P(X,|Yy) = o . L .
t t 4. Estimation: The particle estimation is the weighted
/ [T Px-1x- 1) P(Xo) [] POYZIX7)dxg sum of the particles(’:
x5! T=1 7=1
° t t
P(X,|X,—1)P(Xo) || P(Y;|X,)dX] . N
/Xé 71_[:1 Tl_[:l 0 Xip1jt+1 = ZthrlXtJrl (11)
(7) i1
So the solution of Markov processes filterifg X, | Y ) . .
is based on two probability density functions: For a dynamical processing, parts 2,3 and 4 must be

time-iterated.
e the transition lawP(X | X,_1) from the stateX,_;
attimer — 1 to the stateX,, at timer; One can represent (fig. 3) the discretization using the par-
ticle method of the probability density functidd(X;|Y{)

o the observation lawP(Y;|X ) which is linked to the Of the state vector conditional to the observations. This fig-
measurement equation. ure depicts the basic evolution/weighting procedure where
the particles are represented as Dirac measures. The evolu-
tion of each particle in the state space (shown in dot line)
is done according to eq. 8. At each time, the weights are

The basic particle method uses a probability space rj:ﬁ)_mputed using equation 9. The magnitude of the Dirac

resentation with N Dirac measures (particles) whos \easures (fig._ 3) is r_elated to the weight of ”the partic_le.
supportsX; and weightsp! are conditioned by the mea-F'né.l”y' .the"welghted D|ra_c. comb rgpresen_ts a partltcle dis-
surements. cretization” of the probability density functioR( X, |Y{).

4.2 Basic particle procedure [18]

The basic particle approach to the filtering problem can Probability
be summarized into four points:

1. Filter initialization: Each particlé({ is initialized ac-
cording to a random sampling of thee priori law
P(Xy). The initial weightsp), are set to% (where
N is the number of particles);

2. Evolution: The particlest)i:{le} evolve in the
state space according to the system’s stochastic flow,
through the generation of N random sequences of in-
dependent;, ; with law P(r¢41);

Fig. 3: Evolution of the particle network

Xio1 = Fo (X, mi0) (8) 4.2.1 Redistribution procedure

3. Weighting: The above evolution is followed by dt is known that the basic particle procedure does not pre-
weighting stage, in which the normalized weightsp vent some of the weights to be low compared to those of
must be corrected by the measures available at tirather particles and therefore to poorly contribute to the per-
t + 1, according to Bayes' rule: formance of the estimator (eq. 11). Indeed, the probability

will concentrate on an unique particle and the optimality of

i the solution cannot be ensured.
P(Yiq1|X{)

Pl = ~ Pl 9 To this end, a_red_istribution technique may pe ap|_olie_d
Zp(y |Xj ) which is an application of elementary resampling princi-
— anibinas ple. It consists of redistributing all particles from the ex-
]:

plored positions of the state space, by sampling in accor-
Under the common assumption of noise vector inddance to the acquired probability weights. The procedure
pendence, the weights in the multisensor framewogdlows "heavy” particles to give birth to more particles at
can be computed as follows: the expense of "light” particles which die.



4.3 Rendering process

The computing of the weights; ,, is done according to
the measurements at time- 1 and their particle-based re-
construction. This reconstruction stage uses the non-linear
transfer functiongh?, h%) to project the 3D model of the
object on each sensor.

In this section, one details the rendering process of the
object, which can be mainly split in two stages:

— nf(u,v) andn! (u,v) are the grey levels of
the pixel with coordinates, v in the range
and intensity images;

— (ay, uo, Qy, Vo, By) @and @, ug, o, vy,
By, ag) are the intrinsic parameters of the
synthetic andDdeticssensors, respectively;

— f1 et f5 detail the illumination models for
the synthetic and real sequences.

¢ Model transformation: the characteristics parametess Results

of the object must be converted from the local refer-

/

e results detailed in the sequel use 10000 particles to pro-

ence frame to the reference frame of the sensor usi %
a rigid transformation: vi

e an accurate estimation, although the method performs

well with 1000 particles. Concerning the timing for run-

X, Xm ning this method, it must be noticed that it can be much
Y. Rsxs Tsxi Y., improved using hybrid methods such as Kalman particle fil-
= (12) , : o
Z. O1x3 lixi Zom tering, for instance. Moreover, it is linked to the polygonal
1 complexity of the object since the rendering process is done

by the graphic card and to the speed rate between the com-
- (Xm,Yn,Zy) and(X,, Y., Z.) are the coordi- puter's memory and the graphic memory. Typically, with-
nates of a 3D point respectively in the local andut any optimization, the algorithm performs in approxi-

the sensor-based reference frames;

— R = Ryx.Ryv.Ry= is the rotation matrix (3x3) Synthetic sequence using 10000 particles.

defined by the angular parameters of the state

vector. (Ry: ),—(xv,z} are the rotation matrices2-1  Synthetic sequence

for the axis§ X, Y, 97;

- T =(X)Y, Z)T is the vector composed by the
coordinates of the center of gravity in the sensor-
based reference frame.

e Projection: the transfer function of the sensor is usec
to project the 3D object in the image planes (range ant
intensity). Two sensor models are more particularly
studied:

1. The following model have been used for the syn-

mately 7s/frame for the real sequence and 40s/frame for the

\\\

thetic sequence: ® "
0 50 99 ‘

uft! = au% + up

g Fig. 4: Intensity and range images of the synthetic sequence
pftd = 7%+ 19

vZ. (13) att={0, 50, 99

nl(ua U) = fl (Xca}/;7Zc)
nf(u,v) = Z The method is first applied to a sequence of 100 synthetic

) range and intensity images, whose resolution is equal to
2. Inthe real data case, one uses@ieticssensor 256y256 pixels. The tracked object is a vehicle that evolves

which can be modelled by [21]:

according to a rigid motion. Figs. 4 show the images at

the beginning, the middle and the end of the sequence (the

first line shows the intensity images and the bottom line the

1 (Y, .
uft! = aytan™! 7>+U6 range images).
vftd = ol tan~! é)-i—v() — : . .
Ze v Position | Translation| Orientation Speed

8ol tan! (7) — Bl (rad) | (rad/frame)

n(uv) = fo(Xe,Ye, Z) [Errors| 0.008 | 0.006 | 0.002 | 0.002 |
R = JXZHY212Z2)-

n*(u, v) XE+Y2+22) —ao (14) Table 1: Estimation errors for the synthetic sequence
Where:

Figs. 5 shows the car tracking results. The wireframe

— w1, vB1 are the pixel coordinates of theestimate is displayed on the range and intensity measure-
3D point respectively in the range (R) andnents. As it can be seen on Figs. 6, after a short period

intensity (1) images;

of convergence, the algorithm tracks efficiently the vehicle



80 99

Fig. 5: Car tracking results at {8, 20, 40, 60, 80, 99
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5.2 Real sequence
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