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Abstract – In this paper we present a hierarchical resource
management algorithm for adaptive airborne surveillance radars.
The dynamics of the radar are formulated as a stochastic discrete
event system. By abstracting the physical layer sensor perfor-
mance into a quality of service measure, the resource management
problem is formulated as a constrained Markov decision process.
A two-level (two-timescale) resource management algorithm is de-
veloped based on Lagrangian relaxation. A numerical example is
presented on a scenario involving different target densities.
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1 Introduction
The beam agility of an Electronically Scanned Antenna
(ESA) radar permits adaptive allocation of transmitted en-
ergy in time and space. There is strong motivation in
designing scheduling policies that utilizes the agility to
achieve an adaptation of an ESA radar to a given set of
tasks, such as tracking a set of targets, or searching a sector
for new targets. The objective is to enhance the overall sys-
tem performance, which depends on the quality of the radar
output, i.e, on how closely the radar track database matches
the actual targets. Due to the stochastic nature of radar de-
tection and target dynamics, scheduling of radar measure-
ments is a stochastic control problem. Furthermore, the re-
source allocation problem of efficiently conducting several
parallel tracking and searching tasks using the radar’s an-
tenna is an important part of the scheduling problem, and
needs to be considered. Generally, control of ESA radars
is studied in the field of sensor management [1]. There
are two broad methodologies for formulating radar man-
agement problems:

(i) Heuristic Scheduling based on Rule-based Design: In
this methodology, a scheduling rule is defined based on de-
scriptive, rule based design. Work presented in the liter-
ature on heuristic schedulers for radars, which can be re-
garded to include the overall resource allocation problem,
are found in [1], [2]. Some effort has been spent on design-
ing an allocation algorithm for a single target, e.g. [3], and
such algorithms suitably forms the base in schedulers. De-
tailed scheduling of measurement order, given what mea-
surements to make and in what time interval they should be
made, is treated in e.g. [4]. Heuristic schedulers operate in
real time with limited computational resources. However,

relying completely on heuristic schedulers in radar design
is often unsatisfactory due to the difficulties of understand-
ing what performance gains that are achievable by updating
the design. Furthermore, design of a rule base for system
adaptation over both a range of scenarios, and a range of
tasks is sophisticated, particularly for cased when the sys-
tem is downloaded.

(ii) Optimization based Scheduling: In the optimization-
based approach for radar resource management, a multi-
stage cost function over a finite, or infinite, horizon is min-
imized. Unfortunately, the dimensionality of the resulting
formulation typically makes computing the global optimum
intractable. One can resort to the myopic case, i.e., to opti-
mize an instantaneous cost [5], but this is typically inappro-
priate. A long term horizon (e.g. a minute) is desirable in
resource allocation, for instance due to the following items:

• There is long term dynamics in the coupling between
the search scan allocation, and the resulting search per-
formance, mainly because of large surveillance vol-
umes to cover with scarce resources. The coupling
also involves the future number of tracked targets, and
thus the future track load, giving long term dynamics
in the resource demand.

• Platform motion, and course changes in combination
with spatially inhomogeneous antenna gain of an ESA,
lead to a dynamically changing resource demand of
adaptively tracking a set of targets.

• Re-acquisitions of targets that reappear after a blind-
ness period (i.e. Doppler blindness, elevation and veg-
etation mask), and the tracking of a set of interact-
ing targets with potentially mixing tracks, benefit from
planning of measurements over a horizon, and imply
dynamics in the resource demand.

• Synchronization of search scans and adaptive track up-
dates may reduce the resource demand. However, the
synchronization requires a time horizon in decision-
making, stretching at least over the next search scan
pass of a target.

Stochastic optimization methods for sensor scheduling
using stochastic Dynamic Programming (DP) are presented
in [6] and [7]. To solve the full stochastic optimization
problem with DP, simplifying assumptions are needed, for



example using multi-armed bandit models, or assuming sta-
tionarity leading to the employment of Bellman’s equation
[8]. In the radar resource management problem considered
herein, these assumptions are too restrictive, and there is
strong motivation to develop alternative sub-optimal formu-
lations.

This paper is a short version of material submitted for
publication, also presented in [9, Chapter 5]. We present
a hierarchical resource management algorithm for ESA
radars that are based on the optimization approach. An im-
portant aspect of the method is that searching and tracking
are unified in the same framework in a novel manner. Al-
though the primary application is the airborne surveillance
radar, the method can be generalized to other applications
such as ground and ship based multi function radars, fighter
aircraft radars, and multi sensor systems including one or
several adaptive sensors. The main ideas of the paper are
the following:

(i) Stochastic Discrete Event System formulation and ab-
straction of physical level aspects of sensor performance
into Quality of Service (QoS) Measures. The QoS measures
are defined target-wise based on concepts such as track ac-
curacy and track continuity. A single sensor performance
measure is defined as an aggregate of the target-wise mea-
sures, integrated over a time horizon, see Sec.2.1.

(ii) Approximate, discrete time Markov chain modelling
of the dynamics of target wise tracking performance.

(iii) Two-timescale scheduling. What measurements to
make, how, and approximately when are decided on batch-
wise at a slow, regular timescale with interval ∆t (typically
∆t is in the order of a second). This is denoted resource
allocation herein. At a fast timescale, the local order of
measurements within a batch, and in the joint between two
subsequent bathes are arranged. We assume the relevant
dynamics of tracking performance is captured by the slow
timescale, and that the local arrangement within the batches
is of minor significance for the system performance. In the
sequel, we assume the regular, slow-timescale in decision-
making, while the fast timescale scheduling is disregarded.

(iv) Utilization of abstract measurement operations in
decision-making on the slow timescale. A measurement
operation is considered to be an algorithm in the radar that
generate a sequence of measurements needed for achieving
a low-level measurement task such as “update track with
repeated update attempts”, see for instance the track up-
date algorithm designed in [3]. Fast feedback measure-
ments that should be achieved on the fast timescale are
allowed within the measurement operations. Thereby, the
batch-wise, slow-timescale decision-making in resource al-
location is facilitated. An overview of the two-timescale
approach is shown in Fig.1.

(v) Formulation of resource constraints and separation of
the problem into components. The resource constraints in
the antenna are made explicit by a series of constraints on
the used time per time interval (i.e. load). These constraints
are suitably incorporated in an optimization algorithm using
approximate Lagrange relaxation [10]. That is, by replac-
ing future, stochastic Lagrange multipliers with estimates
using average resource constraints, the resource allocation

problem is separated into components. Such a separation
is a condition for a successful optimization based algorithm
based, which otherwise suffers from a combinatorial explo-
sion. The price is that the uncertainty in future effects from
present decisions will not be fully considered in the predic-
tions. Thereby, we optimally solve a problem which is an
approximation of the original, practically unsolvable prob-
lem.

(vi) Hierarchical extension and LRM. To incorporate co-
ordination between track updates and the search scans in a
sector, a hierarchical extension to the separated problem is
proposed. Decisions on track updates are then conditioned
hierarchically on the search scan parameters of the sector.
The space is divided into a set of sectors, and in each sector,
the same search scan sequence is used. Searching and track-
ing in a sector corresponds to a component of the optimiza-
tion problem. We refer to the resulting resource allocation
method based on the hierarchical extension as the Lagrange
Relaxation Method (LRM). The hierarchical method for re-
source allocation based on the LRM can be viewed as an
offline method for benchmarking performance of other re-
source allocation methods. In Sec.4, a numerical example is
provided which demonstrates the utilization of the method
as a tool in radar design.

Stream of radar measurements
(high rate)

Slow time-scale
scheduling
(resource allocation)

Fast time-scale
scheduling

Antenna system &
Signal processing

Fast
feedback,
(track update
failed/ new detection
from search)

Batches of measurement operations
(low rate)

Fig. 1: Two-timescale scheduling.

2 System Model and Resource Allocation
Formulation

In this section, we formulate the resource management
problem as a finite horizon stochastic optimal control prob-
lem. When describing sensor performance, the physical
layer of the system is abstracted into QoS measures, which
are expressed target-wise in terms of tracking utility, and
then aggregated to an overall utility. A Markov chain model
is designed for the prediction of the dynamics of the QoS
measures.

2.1 Tracking utility

We identify that the following abilities are involved when
considering the radar output quality and thus the tracking
performance,

• to maintain tracks of the targets,



• to keep the same identity of the tracks throughout the
surveillance volume, i.e., to avoid track drops leading
to re-initiations with new track identities, and to avoid
mixing two or more tracks,

• to sustain the accuracy of the tracks.

Based on these items tracking QoS measures should be de-
fined and aggregated to a single, non-instantaneous sen-
sor performance measure. The approach taken here is
to define target-wise, instantaneous tracking utility mea-
sures, which are summed over both time and targets to get
the aggregated measure. Assume a scenario with targets
Ti, i ∈ {1, . . . , M}, where M is the number of targets.
In the sequel, i enumerates the targets. The instantaneous
measures are assumed to be functions of a target-wise track-
ing performance state, xi(t). The state includes parameters
needed to express all relevant aspects of tracking perfor-
mance, such as covariance, if a target is tracked or not etc.
Let Ui(xi(t)) denote an instantaneous tracking utility mea-
sure. The overall instantaneous utility of the radar system at
time t is defined as, U(x(t)) =

∑M
i=1 Ui(xi(t)), where x(t)

is the aggregated state of all target-wise performance mod-
els, i.e., x(t) = {xi(t)}M

i=1. The utility function is specified
for each target individually. In cases where tracking perfor-
mance calculations involve several targets, e.g., at crossing
target situations, we have to condition performance calcu-
lations for one target on the tracking performance states of
neighboring targets. Define:

• xi,tracked(t) ∈ {0, 1}, a state variable part of xi(t) in-
dicating if a target is tracked or not.

• Unom,i, a nominal utility measure for tracking a target,
also corresponding to a user priority.

• Qacc,i(xi(t)), a scalar-valued QoS measure for accu-
racy between zero and one, where one means good
accuracy. Herein, we let xi(t) include the variances
of the target kinematic states in tracking (e.g. posi-
tion and velocity), and Qacc,i is a nonlinear function of
these variances.

• tn, the time of a measurement update of a track.

• Ireinit(xi(tn)) ∈ {0, 1}, an indicator of that a track
has been re-initiated after a period where the track has
been lost at time. The state xi(tn) must include the
states necessary to make the indication.

• Creinit,i, a cost for a re-initiation.

• Imix(xi(tn), {xj(tn)|j ∈ Ci}) ∈ {0, 1}, an indictor for
track mixes at the track measurement update at time
tn. The set Ci includes all nearby targets with a mixing
risk.

• Cmix,i, a cost for a track mix.
We choose to express the target-wise, instantaneous utility
as,

Ui(xi(t)) = xi,tracked(t)Unom,iQacc,i(xi(t)) (1)

−
∑

n

Creinit,iIreinit(xi(tn))δ(t − tn)

−
∑

n

Cmix,iImix(xi(tn), {xj(tn)|j ∈ Ci})δ(t − tn) .

If desired, Unom,i, Creinit,i, and Cmix,i can be made state de-
pendent and thus geographically dependent.

In resource allocation herein, we search for the next
batch of measurement operations which maximizes the ex-
pected utility of the radar system integrated over a time
window. That is, given a global tracking performance state
x(t0), where the present time is denoted as t0, the aim is to
maximize the non-instantaneous utility expressed as,

J(x(t0)) = E

{∫ t0+th

t0

U(x(t))dt
∣∣∣x(t0)

}
. (2)

Here, th denotes the prediction horizon. The expectation
is over the future radar measurements, including measure-
ment time instants and measurement errors, and ideally
over the future target trajectories.

In the application, we assume there are no hard con-
straints on tracking quality or on how the system measures,
e.g., on the track update rates. Instead, these constraints are
included softly in Ui(xi(t)).

The non-instantaneous utility is approximated when re-
sorting to the discrete time case. Let 0,∆t, 2∆t, . . . , N∆t

be a uniform partition of the interval 0 to th. Then we have
that,

J(x(t0)) ≈ E

{
N−1∑
k=0

U(x(t0 + k∆t))∆t

∣∣∣x(t0)

}
, (3)

where N is the horizon of decision-making in discrete time.
In the sequel, ∆t will be omitted in the multiplication since
it acts as a scaling. The objective function in Eq.(3) can also
be formulated as a discounted, non-instantaneous utility.

A comment is needed concerning undetected targets
which may become detected and tracked during the predic-
tion horizon. At a decision time instant, the position, veloc-
ity and radar cross section of these targets are not known,
and the evaluation of Eq.(2) with respect to decision on the
search program becomes infeasible. Therefore, a set of test
targets are utilized to sample the space of trajectories of un-
known targets. The density of test targets corresponds to an
a priori modelled density of targets in the scenario, or alter-
natively, weights can be put on the test targets to achieve the
desired density of the model. Given the utilization of test
targets, the number of targets M in the model will remain
constant during predictions, although the predicted number
of tracked targets will change dynamically.

2.2 Dynamic tracking performance model

In this subsection, we discuss a dynamic state model for
prediction of the target-wise tracking utility, introduced in
the preceding subsection. The state of the model includes
parameters needed in describing the instantaneous tracking
utility measure. To facilitate the use of finite dimensional
dynamic programming (DP) algorithms, the model is for-
mulated as a Markov decision process in Sec.2.2.1.

Accuracy

We assume Kalman filters are used as tracking filters,
and that the scalar valued accuracy quality function



Qacc,i(xi(t)) introduced above is a function of the Kalman
filter covariance matrix. That is, the filter covariance Pi,t|s
is part of the state xi(t) where Pi,t|s = E{ξ̃i,t|sξ̃

T
i,t|s}, and

ξ̃i,t|s is the tracking error at time t given the last measure-
ment preceding t occurred at time s.

Let tn be the time instant when observation n occurs,
and let the time since the last update be Tn = tn − tn−1

(herein, the target index i is omitted for the time variables
due to convenience in notation). The Kalman filter covari-
ance evolves according to the Riccati equation,

Pi,tn|tn−1 = F (Tn)Pi,tn−1|tn−1F (Tn)T + Qi(Tn)

Pi,tn|tn
= (I − Ki,nH)Pi,tn|tn−1(I − Ki,nH)T +

Ki,nRi,nKT
i,n, (4)

where Qi(Tn) is the covariance of the covariance input in
the target motion model used in a Kalman filter, Ri,n is the
covariance of the measurement noise, Ki,n is the Kalman
gain, and H is the linear mapping from the kinematic state
of the filter to the observation space.

In order to predict Pi,t|s, it is enough to know: Pi,t0 ,
the initial filter covariance at time t0, the mapping Qi(T ),
the measurement covariances, Ri,n, the prediction time
t, and the time instants of the measurement updates, tn,
n = 1, . . . m, where tm is the last measurement time in-
stant before t. At predictions, only the time instants tn,
n = 1, . . . ,m are stochastic due to uncertainties in when
observation instants will occur. The rest of the variables are
either known or functions of the sequence tn and t. There-
fore, we include t and the sequence tn, n = 1, . . . m as dy-
namic variables explicitly in the state xi(t), while the other
variables are treated as implicitly available. Thus, Pi,t|tm

is parameterized by the state xi(t). Unfortunately, the se-
quence tn grows with time. However, the memory in the
recursion in Eq.(4) is short, and it is sufficient to include
the last few intervals between the observation time instants
in the state i.e., {t− tm, Tm, . . .}, to get a decent prediction
of Pi,t|tm

. As an initiation of the recursion, a covariance
matrix based on the average update rate in the recent past is
used.

To be able to store a distribution over the state xi(t), we
chose to quantize the state, and for efficient calculations,
only {t − tm, Tm} is included. The quantization is made
such that t − tm, Tm ∈ {k∆t} in order to suitably match
the slow-timescale in resource allocation.

Target is tracked

The variable xi,tracked(t) is modelled with a Markov chain.
The transition probabilities depend on the measurements
made on the target, in particular on the detection proba-
bilities Pd. Both a policy for track drops, and a policy for
track confirmation measurements are suitably modelled in
the Markov chain. In the modelling of Pd, the expected
SNR is calculated by the radar equation [1, Chapter 2] with
target position, velocity, and expected radar cross section
(RCS) inserted (see [9] for modelling details). The target
position and velocity are extracted from the future trajec-
tory, which is modelled either deterministically or stochas-
tically.

Re-initiation events

The modelling of re-initiation events is made by augment-
ing the Markov chain above with a state for remembering
that a target has been dropped, denoted as xi,dropped(t), and
a state for indication of the re-initiation event, connected to
the indicator Ireinit,i(tn). From the Markov chain we can
then extract P (Ireinit,i(tn) = 1).

Track mixes

Target-to-track mixes occur as a consequence of plot-to-
track data association errors in dense parts of the scenario,
although only some data association failures lead to track
mixes. The events are assumed to occur at track update
instants. As a rough estimate of the event, the probability
of a plot-to-track association error may be used. Approx-
imate expressions are presented in [11] for scenarios with
a homogeneous density of targets. In [9, Chapter 4], pre-
diction of association errors are studied for scenarios given
two crossing target trajectories.

The calculation of plot-to-track association error events
is based on the predicted accuracies at the measurement
update instants. Thus, the information needed in the state
xi(tn) to predict the filter accuracy at time tn, i.e., the se-
quence {tn, Tn, Tn−1, Tn−2, . . .}, is likewise needed in the
prediction of association error events.

2.2.1 Discrete Event State model formulation

We now formulate a dynamic model where the instanta-
neous tracking performance is a function of the state of this
dynamic model. Based on the discussion above, the state
should describe the observation process, and for accuracy
prediction and track mix predictions, only the recent past
of the observation process. The following discrete variables
evolve dynamically and stochastically with prediction time,
and are explicitly included in the state:

• The quantization of {t − tn, Tn}.

• A discrete variable representing if a target is tracked
or not, xi,tracked(t).

• A discrete variable remembering that target has been
tracked, but is now dropped, xi,dropped(t), plus a vari-
able indicating track re-initiation events.

The track information available at the start of a prediction
interval is static and is only implicitly regarded as being a
part of the state, i.e., Pi,t0 , Ri,n, etc. Detection probabilities
at time t depend on the target kinematic state (i.e. distance,
azimuth and radial velocity), here denoted as ξi(t), and
therefore, ξi(t) is also regarded as a part of the performance
model state xi(t). However, in the calculation of detec-
tion probabilities, ξi(t) is assumed to develop deterministi-
cally, and in the formalism we will treat ξi(t) as separated
from xi(t) for convenience. Thereby, all dynamic, stochas-
tic components in xi(t) are discrete. A suitable model of
the dynamics of xi(t) is then a stochastic discrete event sys-
tem. With the state variables listed above, the transitions in
the system occur due to two types of events:



• Detection opportunity events. When a target has an
opportunity of being detected i.e., when the target is
scanned, a detection opportunity event occurs. The
state transitions resulting from the event depends on
the detection probability, Pd.

• Quantization adjustment events. When time passes,
t− tn increases and the quantization must be adjusted
by switching state. The event occurs on the slow time
scale.

The dynamics of the system can be modelled as a gener-
alized semi-Markov decision process (GSMP) [12]. How-
ever, for computational tractability, we consider a discrete
time Markov chain model for the discrete event system. The
event times are then exclusively multiples of ∆t. Thus, de-
tection times are approximated to occur at the discrete time
instants on the slow timescale.

...
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Fig. 2: An example of a Markov chain for keeping track
of if a target is tracked or not, track re-initiation, and
t − tn, Tn ∈ {k∆t} given that the target is tracked. The
transition probabilities are conditioned on when and how
measurements are made. On target detection, the transition
is to one of the leftmost states depending on the time since
the previous update. On a detection failure, a step to the
right will be taken.

An example of a Markov chain based on the discussion
above is shown in Fig.2. Let pxi,k

be the state probability
vector of xi,k = xi(k∆t). Assume xi,k is a Markov chain
which is affected by control actions dk i.e., xi,k is a Markov
decision process. The target-wise model has the following
form,

pxi,k+1 = Ptr,i(dk, ξi,k)pxi,k
, (5)

where Ptr,i is the transition matrix of the Markov decision
process, and ξi,k = ξi(k∆t) is the kinematic state of tar-
get i. The target motion state ξi,k has been conditioned
on explicitly since it affects the detection probabilities and
evolves dynamically, and consequently, the process is non-
stationary. Typically, Ptr,i has a sparse structure which
should be used in the resource allocation algorithms.

The state is assumed to be fully observed i.e., when time
instant k occurs, the state of the performance model xi,k is
known.

2.3 Parameterization of measurements
We deal with two kind of measurements: search scans, and
adaptive track updates. A search scan is herein parame-
terized with a vector of parameters representing allocated
time per time interval on the slow-timescale. One param-
eter is required for each interval in which the scan may be
allocated. For search scan j, the allocation vector is de-
noted as uj = [uj,k0,j

, uj,k0,j+1, . . . , uj,k1,j
], where k0,j ,

and k1,j are the first and last intervals in which allocation
is allowed. A sequence of search scans associated with a
sector, S, is then parameterized with an aggregated vec-
tor of allocation vectors,uS = [u1, u2 . . . , uj , . . .]. Other
parameters relevant in the performance modelling, such as
integration gain, probability of detection, and the time in-
stant of a scan passing over a certain azimuth location, are
calculated out of uS .

The decisions regarding a sequence of adaptive target
updates are parameterized with a sequence of discrete pa-
rameters, dupd,i = {dupd,i,0, dupd,i,1, . . . , dupd,i,N−1}, where
dupd,i,k ∈ {’update track i at time interval k’, ’do not update
track i at time interval k’ }. An update command triggers a
sequence of update attempts, which results either in a suc-
cessful or a failed detection. The sequence is optimized
locally with the objective to minimize the expected time to
achieve a target detection with a high probability, see e.g.
[3]. Discrete decision variables for target updates facilitates
DP when controlling track updates. However, the resulting
measurement time will be random so to that the processing
time of a planned measurement batch will be random. This
randomness should be considered in an online approach,
for example by adjusting the available time in the following
time interval, [9]. Herein this randomness is disregarded
for simplicity.

3 Optimization of resource allocation
with approximate stochastic Lagrange
relaxation

The resource allocation problem is now to decide on what
measurements to do in the next time interval on the slow-
timescale, with the aim of maximizing the overall, expected
tracking performance predicted over a time horizon. Let
k = 0 represent a decision time instant, where k > 0 is the
future. Formally, the problem is here expressed as,

max
d0

U(x0) + Ex1|x0,d0{J∗
1 (x1)}, (6)

where J∗
1 (x1) represents the future utility as a consequence

of decisions d0 made at k = 0, and given a sequence of
optimal future decision, i.e.,

J∗
k (xk) = max

dk

U(xk) + Exk+1|x0,d0{J∗
k+1(xk+1)}. (7)

Thus, the modelling of the decision consequences has the
form of a recursion with nested maximizations and expecta-
tions. An optimization algorithm for this stochastic control
problem typically relies on stochastic Dynamic Program-
ming. Unfortunately, the size of the state space explodes
combinatorially with the number of targets in the scenario,
and an optimal approach is infeasible. Therefore, approxi-
mate solutions are needed.



Problem separation

An approach to large scale control problems is to try to
achieve a separation into components, where each compo-
nent can be optimized locally, and then coordinated glob-
ally via the constraint on the control signals, i.e., on the al-
located resources in this case. Define the load lk as the total
utilized time per time unit in interval k. The resource con-
straints are formulated as: lk(xk, dk) < 1, k ∈ {0, N − 1}.
The control problem studied herein has a separable struc-
ture in the targets which is suitably explored. A key ob-
servation is that measurements have local effects in space
on tracking performance on targets. For example, track up-
dates of a target affects tracking performance of the target,
and perhaps of nearby targets, but not on targets distant in
space. Likewise, search scans in one sector do not affect
tracking performance of targets in other sectors. Formally,
this reasoning is treated by grouping targets into subtasks
such that decision parameters has local effects in the perfor-
mance modelling of the subtasks. The utility of a subtask s
is then written

Us(xk) =
∑

{i|Ti belongs to s}
Ui(xi,k). (8)

Define xs,k as the aggregated state for the targets sorted to
s. The system utility at time k is then

∑
s Us(xs,k). For

subtask s, and time interval k, the decision parameters are
denoted as ds,k. The decision parameters of the total batch
of scans in interval k is then an aggregate of the decision
parameters for all subtasks. State transitions for targets part
of s are assumed to be locally dependent on ds,k,

pxi,k+1 = Ptr,i(ds,k, ξi,k)pxi,k
, {i|i belongs to s} . (9)

One separation with this property is a division of space into
sectors defined by, e.g., target density, task definitions, and
sensor characteristics. Another possibility is to disregard
the search scan support in tracking, i.e., the search is only
used to cue adaptive tracking. Then, each tracked, indepen-
dently acting target is regarded as an independent subtask.
Neighboring, interacting targets are merged to form new in-
dependent subtasks, and searching a sector for undetected
targets is also an independent subtask. This gives a flat sep-
aration into subtasks as illustrated in Fig.3.

The load in an interval coming from the measurements
associated with s is here denoted as ls,k. Based on the load
of all subtasks, the resource constraints are reformulated as,∑

s

ls,k ≤ 1, k ∈ {0, N − 1}. (10)

Approximate Lagrange relaxation

According to above, decisions on track updates, and search
scans have local effects on tracking performance for each
subtask disregarding one fact: the measurements compete
of the same constrained resources. By introducing La-
grange relaxation, the constraints on the resources are in-
cluded explicitly in the optimization,

Lk(xk, dk, λk) = U(xk) + λk (1 − lk(xk, dk)) + (11)

+ Exk+1|xk,dk

{
max
dk+1

Lk+1(xk+1, dk+1, λ
∗
k+1(xk+1))

}
.

T1

T2,T3

S1

S2

S3

Searching
Sector S1

Searching
Sector S3

Searching
Sector S2

Tracking
Target T1

Tracking
Target T3

Tracking
Target T2

Interfering
Targets

Independent
Subtasks

Fig. 3: Formation of independent subtasks. S1, S2 and S3
represent sectors that should be searched, while T1,T2 and
T3 are tracked targets.

Here, λk is the Lagrange multiplier at time k, and λ∗
k(xk)

is the Lagrange multiplier such that the resource constraint
is fulfilled with equality at optimum d∗k. The aim by intro-
ducing the Lagrange formulation is to separate the problem
into components given an algorithm that globally searches
for the Lagrange multipliers. However, the optimal La-
grange multipliers at future stages λ∗

k(xk), k > 0, depends
on the global state xk, and therefore, such a separation is
not feasible without further simplifications. An operation
that achieves a separation is to replace the future, state de-
pendent Lagrange multipliers with estimates λ̂∗

k based on
constraints on the expected resource utilization [10],

Exk|x0{lk(xk, dk)} = 1, k ∈ {1, . . . , N − 1}. (12)

Due to the expectation, the Lagrange multipliers λk are no
longer dependent on the realization of the global state xk.
Using Eqs.(8-10), one can show that the total Lagrangian
in Eq.(11), with the multiplier estimates inserted, is separa-
ble with respect to the subtasks. It is possible to write (the
approximation comes from using the estimates),

Lk(xk, dk, λk) ≈
∑
s

Ls,k(xs,k, ds,k, λk) + λk +

N−1∑
n=k+1

λ̂∗
n,

where the Lagrangian local to subtask s is defined recur-
sively as

Ls,k(xs,k, ds,k, λk) = Us(xs,k) − λkls,k(xs,k, ds,k) (13)

+ Exs,k+1|xs,k,ds,k

{
max

ds,k+1
Ls,k+1(xs,k+1, ds,k+1, λ̂

∗
k+1)

}
.

Due to the separation, dual programming can be employed
to globally search for the sequence of Lagrange multiplier
estimates {λ̂∗

k}N−1
k=1 and λ0, while the recursion in Eq.(13)

is solved backwards to time k = 0 for each subtask indi-
vidually given the Lagrange multipliers. If the subtask is
to generate updates for a single target where the state space
is fairly small, Eq.(13) forms a base for DP, including the
resource constraint via the Lagrange multiplier cost terms.
The Markov decision process in Eq.(5) based on a chain
such as in Fig.2 can be used straight of [9].



In searching subtasks, the local state space is still too
high dimensional for DP, mainly because of a large number
of test targets. To deal with this complexity, we use open
loop assumptions on the search scan parameters, meaning
that the modelling excludes observations of future states.
The future decisions are then no longer conditioned on the
observed future states, but on the expected future state pre-
dicted from the present state. Formally, the maximizations
are moved outside the expectations. The recursive defini-
tion in Eq.(13) is updated for open loop assumptions to,

Ls,k(xs,k, ds,k, λk) = Us(xs,k) − λkls,k(xs,k, ds,k) (14)

+ max
ds,k+1

Exs,k+1|xs,k,ds,k

{
Ls,k+1(xs,k+1, ds,k+1, λ̂

∗
k+1)

}
.

Synchronization of track updates and search scans is
achieved in the framework by ordering subtasks and pa-
rameter dependencies hierarchically. Tracking of a target
within a sector is then considered as a subtask to the sub-
task of maintaining a radar image in the sector. The DP
optimizations of track updates will be conditioned on the
sequence of search scans in the sector, and on the Lagrange
multiplier estimates. The optimization of search scan pa-
rameters and the generation of Lagrange multiplier esti-
mates are made at a global level using nonlinear program-
ming. For details we refer to [9].

A price to pay with expected resource constraints is
that the uncertainty in the future Lagrange multipliers is
modelled incorrectly in the predictions. For instance, the
future Lagrange multipliers are correlated to the number
of tracked targets, and consequently, the global effects in
the optimization coming from the uncertainty in the future
number of tracked targets will be handled incorrectly. A
possible solution is to consider multiple scenarios of test
target densities in the optimization.

4 Numerical Example

The method including the hierarchical ordering of search-
ing and tracking tasks has been implemented as a bench-
marking reference algorithm. The method is denoted LRM
(Lagrange Relaxation Method) herein. In this section we
illustrate the use of the LRM algorithm as a tool in radar
design. The LRM is compared with both a Track While
Scan (TWS) policy, which updates tracks while scanning
for new targets, and an ad-hoc adaptive tracking (AT) pol-
icy. AT uses the search scans only to cue adaptive tracking,
for which track updates are scheduled once every 10 second
per track. In the scenario herein, 10 seconds is enough to
give satisfactory track quality. More targets result in higher
track load, and left over time is used for searching. Track
loads larger than one result in that AT has to drop tracks,
leading further to reduced overall performance. For both
AT and TWS, search scans are assumed to cover 360 de-
grees before new scans are started.

Due to the open loop assumptions concerning search
scans and Lagrange multipliers in optimization, detailed
evaluations of LRM require extensive Monte Carlo simu-
lations. A quick but low precision alternative is to do eval-
uations using the prediction given by the optimization. The

evaluations of LRM are then based on the open loop as-
sumptions regarding search scans and Lagrange multipliers.
Furthermore, the Markovian discrete event model of Fig.2
is used also for evaluations of TWS and AT. The detection
probabilities are then calculated for each target individually,
and for each time instant k conditioned on the following en-
tities: target location in relation to the radar orientation, tar-
get radar cross section, the sequence of search scans in the
sector of the target uS , scheduled target updates, dupd,i,k.
By inserting these probabilities in the Markovian discrete
event model, the probability vector of the target perfor-
mance state is simulated using Eq.(5).
ESA Radar: The sensor is an airborne ESA radar with the
antenna fixed to the aircraft hull. Along the antenna axis,
the possibility to focus the energy is poor, and the antenna
gain is small. Along the broadside of the antenna, the an-
tenna gain is high. The sensor thus has non-homogenous
properties in space. The models are standard for airborne
surveillance radar. For example, a Swerling 1 model is as-
sumed for the fluctuation of the target radar cross section.
The specifications for the radar equation is that a signal to
noise ratio is 1 for a 1m2 sized target at 500km, given 0.01s
integration time. The two-way 6dB-beamwidth is in the or-
der of a degree. The Kalman filter used is a standard carte-
sian filter in position and velocity based on a Singer model
[1, Chapter 4]. Measurement uncertainty standard devia-
tions are 50 meters in range and 0.1 degrees in azimuth.
See [9] for details.
Task Definition: The task definition is chosen homoge-
nously in that each target is given the same utility func-
tion. A unity reward is given for each second of tracking
when the desires on tracking performance are fulfilled i.e.,
Unom,i = 1 in Eq.(1) for all i. Here, we assume that the de-
sired accuracy is a standard deviation less than 500 meters
both in range and azimuth. The reward is dropped linearly
from one to zero when the standard deviation in either range
or cross range is dropped from 500 meters to 5000 meters.
Let σ0 = 500 and σ1 = 5000, and let σr,i,t|s, σcr,i,t|s be
the filter standard deviations in range and azimuth. In the
example, we have used the following definition of the func-
tion Qacc,i(Pi,t|s) in Eq.(1),

Qacc,i(Pi,t|s) = Q0

(
σr,i,t|s

)
Q0

(
σcr,i,t|s

)
, (15)

Q0(σ) =


1 , σ ≤ σ0

(σ1 − σ)/(σ1 − σ0) , σ0 < σ ≤ σ1

0 , σ > σ1

Track mixes and re-initiations are penalized with costs
Creinit,i = Cmix,i = 20. The cost for a track mix at mea-
surement update n when taking the expectation is then
Cmix,iP (Imix,i(tn)), where P (Imix,i(tn)) is calculated ap-
proximately based on the track density in the scenario.

To include the startup transient in our simulations, k = 0
corresponds to system startup and no targets are tracked at
k = 0. The horizon of the decision-making is chosen as
200 seconds in order to include both the startup phase of
the performance transient, and a period where the transient
has levelled out. The horizon corresponds to N = 100
stages where ∆t is chosen as 2 seconds.



Scenario: We consider 2 sectors with homogenous tar-
get density, where the density differ between the sectors,
see Fig.4. The large sector represents a background tar-
get density, while the small sector represents all sectors
with an increased density. We assume the high density ar-
eas can be identified. The background density was set to
ρS1 = 0.5ρ0, where ρ0 = 1.5 · 10−4 per km2 is the den-
sity of test targets distributed homogenously in space, while
three different densities were chosen for the small sector,
ρS2 = ρ0 · {2, 3, 5}. Fig.5 shows the resulting transients,
where the utility is proportional (approximately with a fac-
tor between 0.7 to 0.9 herein) to the number of tracked tar-
gets. TWS is only considered for ρS2 = 5ρ0. In the other
cases TWS is outperformed. The search scans of both TWS
and AT are started favorably at the edge of the high density
sector S2, and continued 360 degrees before a new search
scan is started.

S1

S2

� �={2,3,5} �

� �=0.5 �

Fig. 4: A scenario with two sectors where the average target
density differs between the sectors.

When ρS2 = ρ0 · {2, 3}, the total density is such that
AT can maintain all tracks, and the performance difference
is minor to LRM, as expected. However, for the final sce-
nario with high total density, ρS2 = 5ρ0, the difference is
significant, also to TWS. LRM improves by adapting mea-
surement behavior in the sectors such that it resembles AT
more in S1 and TWS more in S2.

The two-sectors scenario is simplified compared to real
scenarios. Therefore, the example only gives an indication
on the possible performance gains achievable by improving
the AT and TWS heuristics. Real scenarios are consider-
ably more inhomogeneous, leading to that the gain of LRM
would be higher, if the sectors with increased target densi-
ties are identified.

5 Conclusions

In this paper we formulated resource allocation in adaptive
airborne surveillance radars as a stochastic optimal control
problem on a regular and slow timescale. We modelled per-
formance of radar tracking target-wise as Markov decision
processes. An optimization algorithm based on Lagrange
relaxation was employed to achieve an approximate solu-
tion to the complicated optimization problem. The algo-
rithm relies on a separation of the problem into compo-
nents, which are optimized locally. The method was im-
plemented and demonstrated as an offline tool for bench-
marking other methods. For that purpose, it has great value
in radar design.
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Fig. 5: Startup transients of utility for the scenario in Fig.4.
LRM corresponds to solid curves, TWS to dashed, and AT
to dash-dotted. For the low density scenarios, TWS is out-
performed, and the transient is not shown.
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[4] D. Strömberg and P. Grahn. Scheduling of tasks in phased
array radar. IEEE International Symposium on Phased Array
Systems and Technology, 1996.

[5] K. Kastella. Discrimination gain to optimize detection and
classification. IEEE Transaction on Systems, Man and Cy-
bernetics, 27(1), 1997.

[6] R. Washburn, M. Schneider, and J. Fox. Stochastic dynamic
programming based approaches to sensor resource manage-
ment. 5th International Conference on Information Fusion,
2002.

[7] V. Krishnamurthy and R. Evans. Hidden markov model
multiarmed bandits: A methodology for beam scheduling in
multitarget tracking. IEEE Transactions on Signal Process-
ing, 49, 2001.

[8] D. Bertsekas. Dynamic Programming and Optimal Control,
second edition, Volume I. Athena Scientific, 2000.

[9] J. Wintenby. Resource Allocation in Airborne Surveillance
Radar. PhD thesis, Chalmers University of Technology,
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