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Abstract – We describe a theoretically foundational but 
potentially practical control-theoretic basis for multisensor-
multitarget sensor management using a comprehensive, intuitive, 
system-level Bayesian paradigm based on random set theory.  
We focus on mobile sensors whose states are observed indirectly 
by internal actuator sensors.  We determine optimal controls 
(future sensor states) using a "probabilistically natural” sensor 
management objective function, the posterior expected number 
of targets (PENT).  PENT is constructed using a new “maxi-
PIMS” optimization strategy to hedge against unknowable future 
observation-collections.  It is used in conjunction with the PHD 
or MHC approximate multitarget filters.   
 
Keywords:  sensor management, random sets, control theory. 
 
1  Introduction 
Sensor management is inherently an optimal nonlinear 
control problem. Sensor management differs from 
standard control applications, however, in that it is also 
inherently a stochastic multi-object problem.  It involves 
randomly varying sets of targets, randomly varying sets of 
sensors/sources, randomly varying sets of collected data, 
and randomly varying sets of sensor-carrying platforms. 
    This paper summarizes a theoretically foundational but 
potentially practical control-theoretic basis for 
multisensor-multitarget sensor management using the 
following system-level, Bayesian paradigm: 
    · Model all sensors and targets as a single joint 
dynamically evolving multi-object stochastic system; 
    ·  propagate the state of this system using a multisensor-
multitarget Bayes filter; 
    · apply objective functions that express global 
probabilistic goals for sensor management; 
    ·  apply optimization strategies that hedge against the 
inherent unknowability of future observation-collections;  
    ·  devise principled approximations of this general (but 
usually intractable) formulation. 
    The last step is crucial and difficult:  devise principled, 
potentially tractable:  (1) multitarget filters; (2) global 
objective functions; and (3) optimization strategies.  It 
requires finite-set statistics (FISST) [4, 6, 10, 17, 19], the 
novel random-set version of point process theory that is 
the subject of an invited keynote lecture and paper [18] at 
this conference.   
 In recent years, however, a few partisans have claimed 
that a so-called “plain-vanilla Bayesian approach” suffices 

as down-to-earth, general “first principles” for Bayes 
multitarget filtering and sensor management.  FISST is, 
therefore, mathematical “obfuscation.” But as we argue in 
our keynote paper [18] and elsewhere [5, 7, 10, 19], the 
“plain-vanilla” partisans have manufactured a spurious 
appearance of simplicity and progress, by promoting a 
succession of algorithms that are certainly 
“straightforward” but also afflicted by inherent—and less 
than candidly acknowledged—computational “logjams.” 
    By way of contrast, we have chosen to investigate the 
deep structure of multitarget filtering and sensor 
management, with the aim of developing principled 
approximation strategies.  Our work currently 
encompasses the following aspects of sensor management:   
    ·  targets of current or potential tactical interest [14, 20]; 
    · multistep look-ahead (control of sensor resources 
throughout a future time-window) [14, 22]; 
    · sensors with non-ideal dynamics, including sensors 
residing on moving platforms such as UAVs [16]; 
    · sensors whose states are observed indirectly by 
internal actuator sensors [14]; and 
    ·  possible communication interference [14].   
    Our approach also addresses a more subtle issue:  the 
impossibility of deciding between an infinitude of 
plausible objective functions, by concentrating on 
“probabilistically natural” sensor management goals.  Our 
objective function, the posterior expected number of 
targets (PENT), is constructed using a new optimization 
strategy, “maxi-PIMS,” that optimizes the likelihood of 
collecting the predicted ideal measurement-set (PIMS).  
Intuitively speaking, in a PIMS there are no false 
alarm/clutter observations, every target in the FoV 
generates an observation, and target-generated 
observations are noise-free.   
    The PENT objective function is used in conjunction 
with approximate multitarget filters:  the probability 
hypothesis density (PHD) filter or the multi-hypothesis 
correlator (MHC) filter. Preliminary simulations using 
PENT with an MHC filter have demonstrated good sensor 
management behavior [3].   
 Full details of the approach can be found in  [14].  This 
paper is a summary, but with communications assumed to 
be ideal.  Its purpose is not only to describe our progress, 
but also to sketch the basic concepts of principled—as 
opposed to “plain-vanilla Bayesian”—approximation.  



1 .1 Organization of the paper 
We summarize the mathematical foundations required to 
understand the paper in section 2.  The multitarget Bayes 
filter and its approximations, the PHD filter and MHC 
filter, are discussed in section 3.  Our core approach to 
sensor management is summarized in section 4.  The new 
“maxi-PIMS” optimization strategy is described in section 
5.  It is used to derive formulas for our primary objective 
function, the posterior expected number of targets (PENT) 
in section 6, assuming that sensor dynamics are ideal.  
Section 7 describes the extension of PENT to sensors that 
are dynamically evolving and whose states are observable 
only through the mediation of internal actuator sensors.  
Conclusions may be found in section 8.   
 
2 Mathematical preliminaries 
 
 
2 .1 States and observations  
The states of a multitarget system have the form 

 where the number  n  and states   
of the targets are random.  Measurements have the form  

 where the number  m  is random as well as 
the individual measurements   themselves.  

},...,{ 1 nX xx= nxx ,...,1

},...,{ 1 mZ zz=

mzz ,...,1

 Sensors also have state vectors  x*i  where  i  denotes the 
sensor tag (identifier) of the  i’th sensor.  If only one 
sensor is present we will ignore the tag and write  x*. 
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.2 Integration 

Because states and measurements can vary randomly in 
number, integration must account for this fact.  Let  f(X)  
be a real-valued function of a finite-set variable  X.  Then 
the set integral [4, 6, 10, 17, 19] is defined by 
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If  ∫ f(X)δX = 1  then  f(X)  is a multitarget probability 
density [4, 6, 10, 17, 19].   
 
2.3 Probability generating functionals 
 

Given a random finite set  Ψ  of vectors  y  in some 
space Y.  Given any function of the form 
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where 0 ≤ h0(x) ≤ 1 has no units of measurement; where  
δw(y)  is the Dirac delta; where  w1,…, wm  are distinct 
elements of  Y; and where  w1,…, wm have the same units 
of measurement as the  wi’s.  Then the probability 
generating functional (p.g.fl.) of  Ψ  is:  

GΨ[h]  = ∫ hY  fΨ(Y)δY                           (2) 
(see [13, 12, 16] and  pp. 141, 220 of [2]). Because   
fΨ({y1,…,yi,…,yj,…,yn}) = 0  whenever  yi = yj  for  i ≠ j, 
the p.g.fl. is well-defined and finite-valued because 
undefined products of the form δu(y)2  cannot occur. 

The intuitive meaning of the p.g.fl. is as follows.  Let  Y 
= X  be single-target state space, Ψ = Ξ a random finite 
subset of  X, and   0 ≤ h(x) ≤ 1, so that  h(x)   can be 
interpreted as the field of view (FoV) of some sensor.  

Then  GΞ[h]  is the probability that  Ξ  is contained in the 
FoV.  Since  h(x)  is also a fuzzy membership function on  
X,  GΞ[h]  is a generalization of the belief-mass function  
βΞ(S)  = GΞ[1S] from crisp sets  S  to fuzzy subsets  h. 
 
2.4 Functional derivatives of p.g.fl.’s 
 
The gradient derivative (a.k.a. Frechét derivative) of a 
p.g.fl. G[h]  in the direction of the function  g  is 
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where for each  h  the functional ][hg g
G
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continuous.  Gradient derivatives obey the usual “turn the 
crank” rules of undergraduate calculus, e.g. sum rule, 
product rule, etc.  The functional derivatives of G[h]  are 
gradient derivatives in the direction of Dirac deltas g = δx: 
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for  X = {x1,…,xn}  with  x1,…,xn  distinct.   
 
2.5 Probability hypothesis densities (PHDs) 
 
For a random finite set  Ψ  of vectors  y  in  Y,   
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is the first-moment density or probability hypothesis 
density (PHD) of  Ψ.  The PHD is characterized uniquely 
by the following property:  Its integral in any region  S  of 
Y is the expected number of objects in that region:   
∫SDΨ(y)dy  = E[ |Ψ∩S| ].  Note that 
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PHDs can be computed using the often simpler log GΨ[h]. 
 
3 Multitarget filtering 
 
The general multitarget Bayes filter is described in section 
3.1 and its reformulation in terms of p.g.fl.’s in section 
3.2.  Simpler filters are required to approximate it:  the 
probability hypothesis density (PHD) filter (section 3.3) 
and the multi-hypothesis correlator (MHC) filter (section 
3.5).  The procedure for deriving the PHD filter, which is 
paradigmatic for later sections, is sketched in Section 3.4. 
 
3 .1 The multitarget Bayes filter  
The general foundation for multisensor-multitarget 
detection, tracking, and identification is the following 
generalization of the recursive Bayes filter:  
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is the Bayes normalization factor and where  



1) fk(Z|X) is the multisensor, multitarget likelihood 
function that describes the likelihood of observing the 
observation-set Z given that the targets have 
multitarget state-set X;  

2) fk+1|k(X|W) is the multitarget Markov transition density 
that models interim motion, including target 
appearance and disappearance as well as individual 
target motion.  

 The multitarget Bayes filter is not the straightforward 
extension of the single-target Bayes filter that it appears to 
be [5, 7, 10, 19].  Its proper development requires FISST.  
 For the remainder of the paper we will abbreviate: 
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3 .2 p.g.fl. form of the multitarget filter   
Our approach is based on reformulation of Eqs. (8) and (9) 
in terms of p.g.fl.’s.  This reformulation opens the way to 
systematic approach to approximation [7, 14].  
 ·  p.g.fl. representation of Eq. (8):  The multitarget 
prediction integral can be rewritten as [12, 14, 16]: 
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 ·  p.g.fl. version of Eq. (9):  Define  fk+1[g,h]  by   
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Then Eq. (9) can be equivalently written as [12, 14, 16]:  
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3 .3 PHD approximate multitarget filter   
The PHD was defined in section 2.5.  This section 
summarizes an approximation of the multitarget Bayes 
filter by a multitarget filter that propagates PHDs in place 
of multitarget posterior distributions. 
 · PHD Predictor Equation:  Dk|k(x) can be extrapolated 
to the next time-step using [12, 13]: 
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Here  fk+1|k(x|w)  is the Markov transition for single 
targets; sk+1|k(w)  is the probability that a target with state  
w  at time-step  k  will survive into time-step  k+1; and  
bk+1|k(x) = ∫ bk+1|k({x}∪X)δX  is the PHD of  bk+1|k(X),  
where  bk+1|k(X)  is the probability that targets with state-
set  X  will appear in the scene.   
 · PHD Corrector Equation:  Assume that probability of 
detection and likelihood for the sensor are 
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respectively.  Assume that the observations are corrupted 
by a Poisson false alarm process 
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Let  Zk+1 = {z1,…, zm}  be the new observation-set.  Then   
Dk+1|k(x) of   Gk+1|k[h]  can be updated using [12, 13]: 
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where   Dk+1|k[h] = ∫ h(x) Dk+1|k(x)dx.  
 
3 .4 Derivation of PHD corrector equation   
This section sketches the derivation of the PHD corrector 
Eq. (10), which is paradigmatic for computing the PENT 
objective function.  By Eq. (7) Dk+1|k+1(x)  can be 
computed as a first functional derivative of  log 
Gk+1|k+1[h].  But Gk+1|k+1[h]  can be computed from  
Fk+1[g,h]  of Eq. (14)  using Eq. (15).  Given the 
assumptions of the measurement model of section 3.3, 
Fk+1[g,h]  can be written in terms of  Gk+1|k[h]:   
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where  Nk+1|k  = ∫ Dk+1|k(x)dx.  Then from Eq. (18) we get  
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From this it follows that 

( )∏ ∈ ++
+ +⋅=

Z Dkkk
k LhpDchgFhg
Z

F
z zz ][)(],[],[ |11

1 λ
δ
δ  

So, from Eq. (15) the posterior p.g.fl. is 
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Eq. (17) follows quickly by applying Eq. (7).  
 
3 .5 MHC approximate multitarget filter  
Multi-hypothesis correlator (MHC) filters [1] are 
multitarget filters consisting of recursively alternating 
prediction and correction steps.  At each step they produce 
a set of “hypotheses” as outputs, and probabilities that 
these hypotheses are valid representations of ground truth.  
Each hypothesis is a subset of a “track table” consisting of  
N  tracks for some  N.  Each track has a linear-Gaussian 
probability distribution    where  x)()( jPj j

Nf xxx −= j  is 

the estimated state of the track and  Pj  is its covariance 
matrix.  The  f1(x),...,fN(x)  are independent posterior 
densities constructed from a partition of the time-
accumulated measurements.     
    Any track has a “track probability” qj, which is the sum 
of the hypothesis probabilities of all hypotheses that 
contain that track; and which can be interpreted as the 
probability that the  j’th  track exists.  The q1,..., qN  are 
not necessarily independent because they do not arise 
from a unique partition of the accumulated measurements.  



Nevertheless, the following equation for the predicted 
p.g.fl. can be assumed to be approximately true:  
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This approximation allows us to apply to the MHC filter 
any formula that has been derived for the PHD filter.  In 
any such formula, Eq. (24) can be used to substitute    
Σjqjfj(x) wherever  Dk+1|k(x) occurs.  
 
4 Multitarget sensor management 
 
In this section we briefly review the system-level, control-
theoretic approach to sensor management we have been 
pursuing for the last two years [11, 14-16, 20, 21, 22].  
Our core approach, based on multitarget posterior 
distributions, was introduced in March 1996 [9] and 
slightly generalized in 1998 [8].  This section describes 
primarily our recent p.g.fl.-based refinement of it.     
    Assume that sensors are known and fixed in number.  
Let  x* = (x*1,…, x*s)  be the concatenation of their state 
vectors.  Regard all targets and sensors as part of a single 
stochastically evolving system with joint state  (X, x*).  
Propagate this system using a joint recursive Bayes filter: 
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The joint Markov transition  
fk+1|k(X,x*|W,w*) = fk+1|k(X,x*|W,w*,uk) 

actually depends on a joint control vector   
 that influences the future joint sensor 

state . Consequently, the joint multisensor-multitarget 
posterior distributions  f
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k|k(X,x*)  implicitly depend on a 
time-sequence of control vectors.  We have suppressed 
this dependence to keep notation simpler.  
    The p.g.fl.’s Gk|k[h]  = ∫ hX  fk|k(X)δX   and  Gk+1|k[h]  =   
∫ hX  fk+1|k(X)δX   contain the same information as  fk+1|k(X) 
and  fk+1|k(X).  So we should instead concentrate on 
objective functions defined in terms of the posterior p.g.fl.  
Gk+1|k+1[h].  Since it depends on the unknown future 
observation-set  Zk+1  we must hedge against this fact.  We 
could produce a hedged p.g.fl.  by taking the 
expectation of    G

][1|1 hG kk ++
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k+1|k+1[h]  over all observation-sets, but  
 no longer has any dependence on the unknown 

control/future sensor state.  The expectation of some 
nonlinear transform of  G
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k+1|k+1[h]  no longer has this 
problem, but will be intractable.  Intractability results if 

we use a maxi-min approach, i.e. assume that the  worst-
possible observation-set has been collected.  We studied a 
tractable ”maxi-null” approach [8, 9, 11, 16, 21] that 
turned out to be too conservative.  So we have devised the 
new “maxi-PIMS” strategy described in section 5.  We 
produce a hedged posterior p.g.fl.   using maxi-
PIMS.  The posterior expected number of targets (PENT) 
objective function   can be defined in terms of it.  
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    Maximizing  results in single-step look-ahead 
sensor management—we select an optimal control only 
for the next time-step. In multistep look-ahead we 
determine optimal controls for a future time-window.  
Special techniques are required to deal with this [14, 22]. 
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    Suppose now that we approximate the multitarget filter 
using the PHD filter of section 3.3 or the MHC filter of 
section 3.5.  Then the procedure sketched in section 3.4 
can be used to derive closed-form formulas for objective 
functions defined in terms of  .  Both such 
filters presume that the predicted p.g.fl.  G
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k+1|k[h]   has a 
simplified form.   Therefore the p.g.fl.  Fk+1[g,h]  has a 
simplified form and hence so does  .  We can 
then derive closed-form formulas for PENT that are 
consistent with the approximate filters. 
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    Once we have such formulas, they are used in 
conjunction with an approximate filter for sensor 
management.  In single-step look-ahead we determine the 
next joint control vector (or joint sensor state) by 
optimizing the objective function.  Collect the future 
observation-sets and use the predictor and corrector of the 
approximate filter to incorporate this new information.  
Repeat.  Similarly for multistep look-ahead, except that 
controls/sensor states are chosen for a window, and the 
approximate filter is operated for all steps in that window. 
 
5  “Maxi-PIMS” optimization-hedging 
This section proposes a new potentially tractable 
optimization-hedging strategy.  We begin assuming a  
single sensor, in which case the basic idea is this:  choose 
the future FoV that will have the best chance of producing 
an “ideal” observation-set—i.e., no clutter observations, 
every target in the FoV generates an observation, and 
target-generated observations are noise-free.   
    The PIMS is introduced in section 5.1, the hedged 
posterior p.g.fl.  in section 5.2, the hedged 

posterior PHD  in section 5.3, and the single-
step posterior expected number of targets (PENT)  

 in section 5.4.  We extend the approach to 
the multisensor case in section 5.5. 
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5 .1 Predicted ideal measurement-set (PIMS)   
Assume that sensor likelihood functions have the form 
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Abbreviate .  Begin by assuming that 
the future sensor FoV is a cookie-cutter: 
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= 0  otherwise. That is, an observation will be collected 
from a target if it is in the FoV, but not otherwise.  
Assume that some multitarget state estimation process has 
been used to estimate the number  n   and states  
of the predicted tracks.  Then an “ideal” noise- and clutter-
free observation at time-step  k+1  would be  
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If the FoV is not a cookie cutter then we must account for 
the fact that pD can have values between zero and one.  
Define the subset  Sa(pD)  of single-target state space by      

 Sa(pD)  =  {x| a  ≤ pD (x)}                   (28) 
where we abbreviate .  Let  A  be a 
uniformly distributed random number on  [0,1].  Then the 
random subset  ω→S
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A(ω)(pD)  can be regarded as a random 
FoV that selects among a range of possible alternative 
cookie-cutter FoVs, whose shapes are specified by  pD(x).  
This random set contains the same information as pD(x) 
since pD(x) can be recovered from it:  Pr(x∈Sa(pD)) = 
Pr(A≤ pD(x)) = pD(x).  Also, note that 

 where  “E[-]”  is expected value. )()]([ )( xx1 DpS pE
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5 .2 The hedged posterior p.g.fl.   
Assume that the posterior p.g.fl. can be approximated as  
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for some  G[h]  such that  G[1] = 1  and which has no 
dependence upon  Zk+1; and for some family of functionals  
γz[h]  such that   γz[h]  = 1  for all  z.  (This will prove to 
be the case if Poisson-type approximations like that of Eq. 
(19) of section 3.4 are made.)  Taking the logarithm, 
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Choose some fixed instantiation  Sa(pD)  of the random 
FoV  SA(pD).  Then the log-posterior p.g.fl. must be 
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Since this equation corresponds to only one possible FoV, 
we must produce an equation that corresponds to an 
“average FoV.”  So take the expectation of both sides: 
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Taking the exponential we get the hedged posterior p.g.fl.: 
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5 .3 PENT (single-sensor case)   
According to Eq. (7), the PHD of the hedged posterior 
p.g.fl. may be computed as 
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and according to the formula just before Eq. (7), the 
posterior expected number of targets is: 
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5 .4 PENT (multisensor case)   

For the sake of clarity assume two sensors with FoVs  
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and Poisson false alarm models 
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Begin by modeling the two sensors as a single imaginary 
“pseudo-sensor.” This allows us to apply the reasoning for 
the single-sensor case. (The discussion that follows is 
simplified. See [14] for a full treatment.) Since an ideal-
observation set contains ideal observations collected from 
each target by at least one (but not necessarily both) 
sensors, we can take the probability of detection for the 
pseudo-sensor to be the joint multisensor FoV 

 ))(1())(1(1)( 21 xxx DDD ppp −⋅−−=(             (33) 
where we abbreviate ),,()( 2*
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the probability that at least one of the sensors will collect 
an observation if a target with state  x  is present.  Assume 
that the pseudo-sensor collects observations of the form 

  and has the likelihood function  ),(~ 21 zzz =
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Also, assume the following Poisson false alarm model: 
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Then we assume that the approximation of Eq. (29) holds 
for the pseudo-sensor: 
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Then the corresponding hedged p.g.fl. will be 
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and we compute PENT using Eqs. (31) and (32):  
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6  PENT (ideal sensor dynamics) 
This section sketches the derivation of PENT for two 
cases:   single-sensor, single-step look-ahead; and 
multisensor, single-step look-ahead.  Similar formulas can 
be computed for multistep look-ahead (not described for 
lack of space).  See [14] for a full discussion. 
 
6 .1 PENT (single-sensor, single-step)   
In section 3.4 we noted that in the single-sensor, single-
step look-ahead case the posterior p.g.fl. has the form  
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( ))]1)(1[(exp][ |11 Dkkk phDhG −−= ++             (40) 
This has the same form assumed in Eq. (29) for 
application of the maxi-PIMS optimization strategy.  So 
we know that the hedged posterior p.g.fl. is  



∏
=

++ ⋅=
n

i

p
kk

iD

i
hhGhG

ˆ

1

)ˆ(
)ˆ(1|1 ][][][ x

xηγ&              (41) 

By Eq. (31) the corresponding PHD can be found by 
taking the first functional derivative of the log-p.g.fl.: 
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By Eq. (32) PENT is the integral of this: 
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where we have applied partial.  This formula is used with 
the PHD filter of section 3.3.  It can be modified for use 
with the MHC filter of section 3.5 by using Eq. (24): 
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When there are no false alarms (λ = 0) this reduces to 
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This formula can be computed in closed form if the FoV 
has the Gaussian form 
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6 .2 PENT (multisensor, single-step)   
If we apply the pseudo-sensor approximation of section 
5.4 then Eq. (42) can be directly applied to get a formula 
for PENT in the two-sensor, single-step look-ahead case:  
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When there are no false alarms this reduces to: 
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7  PENT with non-ideal sensor dynamics 
We extend PENT to sensors such as those carried on 
UAVs, assumed of known constant number.  Sensor 
motion is limited by physical or other constraints, and 
these motions are influenced indirectly by choosing 
control vectors  uk rather than directly by choosing future 
sensor states .  Also, we assume that: *

1+kx
    (1) each platform carries one sensor; 
    (2) for each sensor, each target generates at most one 
observation and no observation is generated by more than 
one target; 
    (3) each observation collected from a target is 
contaminated by the sensor noise process; 

    (4) for each sensor, any multitarget observation is 
contaminated by a Poisson false alarm process; and 
    (5) for each sensor, the state of that sensor is observed 
by an internal actuator sensor whose single observation 
may be contaminated by noise, registration error, etc. 
    In [14] we additionally assume that transmission of 
observations may be interrupted.  We do not do so here 
because things simplify considerably otherwise.   
 We have three goals:  derive the PHD predictor (section 
7.2), corrector (section 7.3), and PENT (section 7.4).  
Mathematical preliminaries are discussed in section 7.1. 
 
7 .1 Preliminaries   
We begin by generalizing the foundations described in 
section 2.  When sensors are dynamic and sensor states 
cannot be controlled directly, we regard targets and 
sensors as a single stochastically evolving multi-object 
system.  The joint state of the system will have the form 
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 Observation-sets will have the form 
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where  *mmm +=(   with the number    of 
actuator-sensor observations known and fixed, the number  
m  of sensor observations is random, and z

** nm =

(   is a sensor or 
actuator-sensor measurement:  zz =(   or  i*zz =( .    
 Because we assume that actuator-sensor observations 
are perfectly detected, we may assume that the joint PHD 
on each sensor is actually a probability density:   
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7 .2 PHD predictor (single dynamic sensor)   
 ·  Joint PHD predictor equation (targets):  Make the 
same motion assumptions stipulated in section 3.3.  Then 
the predictor equation for the joint PHD  )(|1 x(

(
kkD +   for 

target states xx =(   is the usual PHD predictor Eq. (16): 
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 ·  Joint PHD predictor equation (sensors):  Assume that 
the between-measurements motion of each sensor is 
described by a Markov transition .  Then )|( ***
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the predictor equation for the joint PHD for sensor states  
i*xx =(  is an ordinary Bayes filter time-update: 
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7 .3 PHD corrector (single dynamic sensor)   
The corrector equation for the joint PHD is as follows:  
 ·  Joint PHD corrector equation (targets):   Let 
probability of detection and likelihood for  ith sensor be 
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respectively.  Assume that the observations are corrupted 
by Poisson false alarm processes 
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Here we have abbreviated: 
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 ·  Joint PHD corrector equation (sensors):   Assume 
that the state  of the i’th sensor is observed by an 
internal actuator sensor, and that such observations  are 
governed by a likelihood function 
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Then the corrector for )(1|1 x(
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++ kkD   for sensor states i*xx =(   
is an ordinary Bayes filter Bayes’ rule data-update: 
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 Eqs. (48) and (49) are derived as follows.  As in section 
3.4, everything hinges on finding a simple formula for 

].[1 hgFk
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+ .  Towards this end, the joint sensor-target 

observation model is linearized as follows:  
 ·  Linearized actuator sensor p.g.fl. :  We assume that 
actuator sensor observations are governed by 
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 · Linearized sensor p.g.fl.:  We assume that sensor 
observations are governed by 
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 · Sensor false alarm p.g.fl.:  Sensor observations are 
corrupted by a Poisson false alarm process of the form: 
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 · Total linearized sensor p.g.fl.:  If the previous three 
models are conditionally independent then:  
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From Eq. (15) we get the following posterior p.g.fl.: 
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If we follow the procedure outlined in section 3.4 we get 
the claimed Eqs. (48) and (49). 
 
7 .4 PENT (single dynamic sensor)   
The posterior p.g.fl. of Eq. (50) has the form assumed in 
Eq. (29) for application of the maxi-PIMS optimization 
strategy.  Let   be the predicted sensor state and assume 
that the actuator sensor likelihood has the additive form 
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where we abbreviate . Then from Eq. 
(50) the hedged posterior p.g.fl. is  
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If we follow the procedure of section 5 we end up with the 
following formula for the PENT: 
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If there are no false alarms and if this equation is modified 
for use with the MHC filter of section 3.5 then  

   (55) ( )∑
=

++ +−×=
N

j
iDDjjkkk ppffqN

1
0

*
01|1 )ˆ,ˆ(]1)[()( xxu&

where   denotes the state 

distribution of the sensor and where  u

)()( *
0

***
0 *

0
xxx −= PNf

k  is the control-
vector at time-step  k.   
 
7 .5 PENT (multiple dynamic sensors)   
The pseudo-sensor approximation described in section 5.4 
can be applied to the dynamic-sensor case in much the 
same way as in the non-dynamic case described in section 
6.2 [14].  For lack of space, we do not explore this further.    
 
8  Conclusions 
In this paper we have described a general system-level, 
control-theoretic approach for the management of mobile 
sensors whose states are indirectly observed by internal 
actuator sensors, but assuming no communication 
interference.  Preliminary two-sensor, single-step look-
ahead simulations using PENT with an MHC filter have 
demonstrated good sensor management behavior [3]. 



 Ultimate proof of the utility of the approach depends, of 
course, upon continued demonstration of good behavior 
under increasingly realistic conditions.  Even so, genuine 
progress depends on investigation of the deep stochastic 
structure of multisensor, multitarget sensor management 
problems.  In [7] we argued that deeper insight is required 
if the inherent—but less than candidly acknowledged—
computational “logjams” of the “plain-vanilla Bayesians” 
are to be surmounted.  Indeed, the “plain-vanilla Bayesian 
approach” is an obstacle to such insight because of its 
obscurantist insistence that modeling and computational 
implementation must be “straightforward” (i.e., 
simplistically intertwined) and that anything else is 
“obfuscated.” Deeper investigation is precisely what 
FISST dares to attempt. 
 This having been stated, our work still has significant 
limitations.  We must assume that the sensors are fixed in 
number.  This precludes the possibility of sensors entering 
or leaving a scenario.  We must assume that each platform 
carries exactly one sensor.  Our basic scheme is still 
centralized.  Future work must address such issues. 
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