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Abstract — We describe a theoretically foundational but
potentially practical control-theoretic basis for multisensor-
multitarget sensor management using a comprehensive, intuitive,
system-level Bayesian paradigm based on random set theory.
We focus on mobile sensors whose states are observed indirectly
by internal actuator sensors. We determine optimal controls
(future sensor states) using a "probabilistically natural” sensor
management objective function, the posterior expected number
of targets (PENT). PENT is constructed using a new “‘maxi-
PIMS” optimization strategy to hedge against unknowable future
observation-collections. It is used in conjunction with the PHD
or MHC approximate multitarget filters.
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1 Introduction

Sensor management is inherently an optimal nonlinear
control problem. Sensor management differs from
standard control applications, however, in that it is also
inherently a stochastic multi-object problem. It involves
randomly varying sets of targets, randomly varying sets of
sensors/sources, randomly varying sets of collected data,
and randomly varying sets of sensor-carrying platforms.

This paper summarizes a theoretically foundational but
potentially  practical  control-theoretic ~ basis  for
multisensor-multitarget sensor management using the
following system-level, Bayesian paradigm:

- Model all sensors and targets as a single joint
dynamically evolving multi-object stochastic system;

- propagate the state of this system using a multisensor-
multitarget Bayes filter;

apply objective functions that express
probabilistic goals for sensor management;

apply optimization strategies that hedge against the
inherent unknowability of future observation-collections;

- devise principled approximations of this general (but
usually intractable) formulation.

The last step is crucial and difficult: devise principled,
potentially tractable: (1) multitarget filters; (2) global
objective functions; and (3) optimization strategies. It
requires finite-set statistics (FISST) [4, 6, 10, 17, 19], the
novel random-set version of point process theory that is
the subject of an invited keynote lecture and paper [18] at
this conference.

In recent years, however, a few partisans have claimed
that a so-called “plain-vanilla Bayesian approach” suffices

global

as down-to-earth, general “first principles” for Bayes
multitarget filtering and sensor management. FISST is,
therefore, mathematical “obfuscation.” But as we argue in
our keynote paper [18] and elsewhere [5, 7, 10, 19], the
“plain-vanilla” partisans have manufactured a spurious
appearance of simplicity and progress, by promoting a
succession  of  algorithms that are certainly
“straightforward” but also afflicted by inherent—and less
than candidly acknowledged—computational “logjams.”

By way of contrast, we have chosen to investigate the
deep structure of multitarget filtering and sensor
management, with the aim of developing principled
approximation  strategies. Our work currently
encompasses the following aspects of sensor management:

- targets of current or potential tactical interest [14, 20];

- multistep look-ahead (control of sensor resources
throughout a future time-window) [14, 22];

- sensors with non-ideal dynamics, including sensors
residing on moving platforms such as UAVs [16];

- sensors whose states are observed indirectly by
internal actuator sensors [14]; and

- possible communication interference [14].

Our approach also addresses a more subtle issue: the
impossibility of deciding between an infinitude of
plausible objective functions, by concentrating on
“probabilistically natural” sensor management goals. Our
objective function, the posterior expected number of
targets (PENT), is constructed using a new optimization
strategy, “maxi-PIMS,” that optimizes the likelihood of
collecting the predicted ideal measurement-set (PIMS).
Intuitively speaking, in a PIMS there are no false
alarm/clutter observations, every target in the FoV
generates an  observation, and target-generated
observations are noise-free.

The PENT objective function is used in conjunction
with approximate multitarget filters: the probability
hypothesis density (PHD) filter or the multi-hypothesis
correlator (MHC) filter. Preliminary simulations using
PENT with an MHC filter have demonstrated good sensor
management behavior [3].

Full details of the approach can be found in [14]. This
paper is a summary, but with communications assumed to
be ideal. Its purpose is not only to describe our progress,
but also to sketch the basic concepts of principled—as
opposed to “plain-vanilla Bayesian”—approximation.



1.1 Organization of the paper

We summarize the mathematical foundations required to
understand the paper in section 2. The multitarget Bayes
filter and its approximations, the PHD filter and MHC
filter, are discussed in section 3. Our core approach to
sensor management is summarized in section 4. The new
“maxi-PIMS” optimization strategy is described in section
5. It is used to derive formulas for our primary objective
function, the posterior expected number of targets (PENT)
in section 6, assuming that sensor dynamics are ideal.
Section 7 describes the extension of PENT to sensors that
are dynamically evolving and whose states are observable
only through the mediation of internal actuator sensors.
Conclusions may be found in section 8.

2  Mathematical preliminaries

2.1 States and observations

The states of a multitarget system have the form
X ={X,,...,X,} Where the number n and states Xx,,...,X

X,
of the targets are random. Measurements have the form
Z={z,,...,2,,} where the number m is random as well as

the individual measurements z ,...,z = themselves.

Sensors also have state vectors X~ where i denotes the
sensor tag (identifier) of the i’th sensor. If only one
sensor is present we will ignore the tag and write X .

2.2

Because states and measurements can vary randomly in
number, integration must account for this fact. Let f(X)
be a real-valued function of a finite-set variable X. Then
the set integral [4, 6, 10, 17, 19] is defined by

[, Fxox :f(®)+i#Ln F (%, X, Py, -, (D)

If [f(X)8X =1 then f(X) is a multitarget probability
density [4, 6, 10, 17, 19].

Integration

2.3 Probability generating functionals

Given a random finite set W of vectors y in some

space Y. Given any function of the form
h(y)=ho(y) +W,8,, () + ...+ W, 6, (¥)

where 0 < hy(X) < 1 has no units of measurement; where
Ow(y) 1is the Dirac delta; where wy,..., Wy are distinct
elements of Y; and where wy,..., Wy, have the same units
of measurement as the w;’s. Then the probability
generating functional (p.g.fl.) of ¥ is:

Gy[h] =[h" fu(Y)3Y 2
(see [13, 12, 16] and pp. 141, 220 of [2]). Because
fo({Y1,--sYise--sYjp----¥n}) = 0 whenever y;=Yy; for i#],
the p.g.fl. is well-defined and finite-valued because
undefined products of the form 8,(y)* cannot occur.

The intuitive meaning of the p.g.fl. is as follows. Let Y
= X be single-target state space, ¥ = E a random finite
subset of X, and 0 < h(x) <1, so that h(X) can be
interpreted as the field of view (FoV) of some sensor.

Then Gg[h] is the probability that = is contained in the
FoV. Since h(x) is also a fuzzy membership function on
X, Gg[h] is a generalization of the belief-mass function
B=(S) = Gz[1s] from crisp sets S to fuzzy subsets h.

2.4 Functional derivatives of p.g.fl.’s

The gradient derivative (a.k.a. Frechét derivative) of a
p.g.fl. G[h] in the direction of the function g is

ag £>0 &
where for each h the functional g— %[h] is linear and

continuous. Gradient derivatives obey the usual “turn the
crank” rules of undergraduate calculus, e.g. sum rule,
product rule, etc. The functional derivatives of G[h] are
gradient derivatives in the direction of Dirac deltas g = dy:

5°G 9 06 @)
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for X = {Xy,....Xn} with Xy,...,X, distinct.

2.5 Probability hypothesis densities (PHDs)

For a random finite set ¥ of vectors y in Y,

D (y) = fy (1= f, (iyhov)or ©)
is the first-moment density or probability hypothesis
density (PHD) of Y. The PHD is characterized uniquely
by the following property: Its integral in any region S of
Y is the expected number of objects in that region:
JsDy(y)dy =E[ |[¥NS| ]. Note that
SlogGy ., _[ 1 &,

% Gy[h] oy
PHDs can be computed using the often simpler log Gy[h].

[h]} =Dy(y)

3 Multitarget filtering

The general multitarget Bayes filter is described in section
3.1 and its reformulation in terms of p.g.fl.’s in section
3.2. Simpler filters are required to approximate it: the
probability hypothesis density (PHD) filter (section 3.3)
and the multi-hypothesis correlator (MHC) filter (section
3.5). The procedure for deriving the PHD filter, which is
paradigmatic for later sections, is sketched in Section 3.4.

3.1 The multitarget Bayes filter

The general foundation for multisensor-multitarget
detection, tracking, and identification is the following
generalization of the recursive Bayes filter:

Fa (X1 Z9) = [y (X W) f, W [ Z€)ow (8)

fk+1(zk+1 ‘ X)' fk+1\k(x ‘Z(k)) (9)

fk+l\k+](x |Z(k+l)): f (Z |z(k))
k+1 k+1

where
e (Z1Z29) = [ £, Z1X) - iy (X 1Z29)6X

is the Bayes normalization factor and where



1) fu(ZX) is the multisensor, multitarget likelihood
function that describes the likelihood of observing the
observation-set Z given that the targets have
multitarget state-set X;

2)  f(X|W) is the multitarget Markov transition density
that models interim motion, including target
appearance and disappearance as well as individual
target motion.

The multitarget Bayes filter is not the straightforward
extension of the single-target Bayes filter that it appears to
be [5, 7, 10, 19]. Its proper development requires FISST.

For the remainder of the paper we will abbreviate:

fk+1\k (X)= fk+1\k(x | Z(k))

fk+1\k+1(X )= fk+uk+1(x |Z (km)

(10)
an

3.2 p.g.fl. form of the multitarget filter

Our approach is based on reformulation of Egs. (8) and (9)
in terms of p.g.fl.’s. This reformulation opens the way to
systematic approach to approximation [7, 14].

p.g.fl. representation of Eq. (8): The multitarget
prediction integral can be rewritten as [12, 14, 16]:

Gk+1\k[h] = J-Gk+1\k[h ‘ X]' fk\k(x)é)( (12)
where
Gy [h] X]= Ihy fa (Y [ X)6Y (13)
- p.g.fl. version of Eq. (9): Define fy.1[g,h] by
Falg,h]=[g*h £, Z | X) i (X)oXZ  (14)

Then Eq. (9) can be equivalently written as [12, 14, 16]:
@[0, h]

Z,,

Gy ] = S ——
A[O,l]
ézkﬂ

(15)

3.3 PHD approximate multitarget filter

The PHD was defined in section 2.5. This section
summarizes an approximation of the multitarget Bayes
filter by a multitarget filter that propagates PHDs in place
of multitarget posterior distributions.

- PHD Predictor Equation: Dy(X) can be extrapolated
to the next time-step using [12, 13]:

Dy (X)) = bk+1\k (x)
+ j S (W) fk+1\k (X|w)Dy (w)dw

Here fisp(X|w) is the Markov transition for single
targets; Sc+1(W) is the probability that a target with state
w at time-step Kk will survive into time-step k+1; and
breik(X) = Derip({X}UX)8X is the PHD of by ij(X),
where by (X) is the probability that targets with state-
set X will appear in the scene.

- PHD Corrector Equation: Assume that probability of
detection and likelihood for the sensor are

Po(X) = pD(X’X;H) > L) =fi,(z] X>X;+1)
respectively. Assume that the observations are corrupted
by a Poisson false alarm process

/1 = ﬂ'kﬂ 4 C(Z) = Ck+1 (Z)

(16)

Let Z+; = {Zy,..., Zn} be the new observation-set. Then
Dis1(X) of  Gysp[h] can be updated using [12, 13]:

1-py(X)
Dk+1|k+1 (x)= + i Po (X) Lz, (X)
i A6(Z;)+ Dy,y[poly, ]
where Dy ip[h] = [ h(X) Dy (X)dx.

D () (17)

3.4 Derivation of PHD corrector equation

This section sketches the derivation of the PHD corrector
Eq. (10), which is paradigmatic for computing the PENT
objective function. By Eq. (7) Dy+i+1(X) can be
computed as a first functional derivative of log
Giriks1[N].  But Gisips1[h] can be computed from
Fwi[g,h]  of Eq. (14) using Eq. (15). Given the
assumptions of the measurement model of section 3.3,
Frr1[g,h] can be written in terms of Gy.qx[h]:

Fk+][gah] = e_’“’icg ' Gk-¢-1|k[h(1 - pD + pD pg )]
where

(18)

¢, = [9(2) ¢, (2)dz

Py () =[9(2)- fi(Z|%X,.,)dz
Assume that the predicted p.g.fl. is approximately Poisson
Gk+uk[h] = exp(— Nk+1|k + Dk+1\k[h]) (19)
where Ny = | Di+1j(X)dx. Then from Eq. (18) we get
Fe.l9,h] (20)
= exp(—/i =Ny +4¢, + Dy [h(1 = pp + Pp Py )])
From this it follows that

oF,,
=g, hl=Fol0.h) T, (10@) + Dy hpo L, )
So, from Eq. (15) the posterior p.g.fl. is

Ac(2)+ Dy [hp, L, ]
Gy.ikalh] =G, [h]- Hzez 26(2) + Dy [ Po L, ]
where

21

Gealhl=exp(D,,, [(h-DA-py)])  (22)

Eq. (17) follows quickly by applying Eq. (7).

3.5 MHC approximate multitarget filter

Multi-hypothesis  correlator (MHC) filters [1] are
multitarget filters consisting of recursively alternating
prediction and correction steps. At each step they produce
a set of “hypotheses” as outputs, and probabilities that
these hypotheses are valid representations of ground truth.
Each hypothesis is a subset of a “track table” consisting of
N tracks for some N. Each track has a linear-Gaussian
probability distribution f,(x)=N o, (X=X)) where X; is

the estimated state of the track and P; is its covariance
matrix. The fi(X),...,fy(X) are independent posterior
densities constructed from a partition of the time-
accumulated measurements.

Any track has a “track probability” gj, which is the sum
of the hypothesis probabilities of all hypotheses that
contain that track; and which can be interpreted as the
probability that the j’th track exists. The qi,..., n are
not necessarily independent because they do not arise
from a unique partition of the accumulated measurements.



Nevertheless, the following equation for the predicted

p.g.fl. can be assumed to be approximately true:
N

G 1= (-, +q,f,h])

j=1
where fi[h] = I h(x) fi(x)dx. In this case it is easy to see
that the PHD of Gy, [h] is
N
Dk+1\k x) = qu' fj (%)
j=1

and so we can use the even simpler Poisson approximation
N

Gyy[h]= exp(Zq j (1 —f j[h])] (25)
j=1

This approximation allows us to apply to the MHC filter
any formula that has been derived for the PHD filter. In
any such formula, Eq. (24) can be used to substitute
%,qifi(x) wherever Dy (X) occurs.

(23)

(24)

4 Multitarget sensor management

In this section we briefly review the system-level, control-
theoretic approach to sensor management we have been
pursuing for the last two years [11, 14-16, 20, 21, 22].
Our core approach, based on multitarget posterior
distributions, was introduced in March 1996 [9] and
slightly generalized in 1998 [8]. This section describes
primarily our recent p.g.fl.-based refinement of it.

Assume that sensors are known and fixed in number.
Let x* = (x*',..., x*) be the concatenation of their state
vectors. Regard all targets and sensors as part of a single
stochastically evolving system with joint state (X, Xx*).
Propagate this system using a joint recursive Bayes filter:

P (GX) = [ iy OGXT WL W) o (W, w )W
fr(Ziy | X,X0)- fk+l\k(an*)

fk+l\k+1(X9X*)= fZo)
k+1 k+1

where
fa(2) :.[ fra(Z 1 X,x7)- faw (X , X )OX

The joint Markov transition

fier e OGXF W, W) = iy XX W, W, U )
actually depends on a joint control vector
U, =(Uj,...,u;) that influences the future joint sensor

state x;H. Consequently, the joint multisensor-multitarget

posterior distributions fi(X,x*) implicitly depend on a
time-sequence of control vectors. We have suppressed
this dependence to keep notation simpler.

The p.g.fl.’s G[h] =[] h* £ (X)X and Gywyp[h] =
fnX fir1(X)6X  contain the same information as fis(X)
and f(X). So we should instead concentrate on
objective functions defined in terms of the posterior p.g.fl.
Gis1jk+1[N].  Since it depends on the unknown future
observation-set Zy,; we must hedge against this fact. We
could produce a hedged p.g.fl. Gk+1|k+1[h] by taking the

expectation of Gy i+1[h] over all observation-sets, but

Gy [N] DO longer has any dependence on the unknown

control/future sensor state. The expectation of some
nonlinear transform of Gyiips+1[N] mno longer has this
problem, but will be intractable. Intractability results if

we use a maxi-min approach, i.e. assume that the worst-
possible observation-set has been collected. We studied a
tractable “maxi-null” approach [8, 9, 11, 16, 21] that
turned out to be too conservative. So we have devised the
new “maxi-PIMS” strategy described in section 5. We
produce a hedged posterior p.g.fl. G [h] using maxi-

k+1]k+1
PIMS. The posterior expected number of targets (PENT)

objective function l\]kﬂ‘“l can be defined in terms of it.

Maximizing Nk+1|k+1 results in single-step look-ahead
sensor management—we select an optimal control only
for the next time-step. In multistep look-ahead we
determine optimal controls for a future time-window.
Special techniques are required to deal with this [14, 22].
Suppose now that we approximate the multitarget filter
using the PHD filter of section 3.3 or the MHC filter of
section 3.5. Then the procedure sketched in section 3.4
can be used to derive closed-form formulas for objective
functions defined in terms of G, [h]. Both such
filters presume that the predicted p.g.fl. Gy [h] has a
simplified form. Therefore the p.g.fl. Fys([g,h] has a

simplified form and hence so does Gk+1|k+1[h]' We can

then derive closed-form formulas for PENT that are
consistent with the approximate filters.

Once we have such formulas, they are used in
conjunction with an approximate filter for sensor
management. In single-step look-ahead we determine the
next joint control vector (or joint sensor state) by
optimizing the objective function. Collect the future
observation-sets and use the predictor and corrector of the
approximate filter to incorporate this new information.
Repeat. Similarly for multistep look-ahead, except that
controls/sensor states are chosen for a window, and the
approximate filter is operated for all steps in that window.

5 “Maxi-PIMS” optimization-hedging

This section proposes a new potentially tractable
optimization-hedging strategy. We begin assuming a
single sensor, in which case the basic idea is this: choose
the future FoV that will have the best chance of producing
an “ideal” observation-set—i.e., no clutter observations,
every target in the FoV generates an observation, and

target-generated observations are noise-free.
The PIMS is introduced in section 5.1, the hedged

posterior p.g.fl. Gk+l|k+l[h] in section 5.2, the hedged
posterior PHD Dk+l\k+l(x) in section 5.3, and the single-

step posterior expected number of targets (PENT)
NMkH(x;H) in section 5.4. We extend the approach to

the multisensor case in section 5.5.

5.1 Predicted ideal measurement-set (PIMS)

Assume that sensor likelihood functions have the form
LZ (X) = fk+1 (Z | X’ X;+1) = .':WkJrl (Z - 77k-¢-1 (X’ XT<+1 )) (26)
Abbreviate 7(x)=17,,,(X,X,,,)- Begin by assuming that

the future sensor FoV is a  cookie-cutter:
Pp (X, X;,,) = 15(x) where 15(x) =1 if x € S and 15(x)



= 0 otherwise. That is, an observation will be collected
from a target if it is in the FoV, but not otherwise.
Assume that some multitarget state estimation process has

been used to estimate the number i and states X ,...,X,

of the predicted tracks. Then an “ideal” noise- and clutter-
free observation at time-step k+1 would be

Zo =, s %)}

If the FoV is not a cookie cutter then we must account for
the fact that pp can have values between zero and one.
Define the subset S;(pp) of single-target state space by

27

Sa(Pp) = {X/a <pp (X)} (28)
where we abbreviate p,(X)= p,(X,X,,). Let A bea
uniformly distributed random number on [0,1]. Then the

random subset ®—>Sa,)(Pp) can be regarded as a random
FoV that selects among a range of possible alternative
cookie-cutter FoVs, whose shapes are specified by pp(X).
This random set contains the same information as pp(X)

since pp(X) can be recovered from it: Pr(xeSy(pp)) =
Pr(A<  ppo(X)) = po(X). Also, note that
E[Ls, () ()] = Po(¥) where “E[-]” is expected value.

5.2 The hedged posterior p.g.fl.

Assume that the posterior p.g.fl. can be approximated as
Gipen[N] :G[h]'l_[zezw1 7.[h] (29)

for some G[h] such that G[1] =1 and which has no
dependence upon Zy.; and for some family of functionals
v2[h] such that vy,[h] =1 forall z. (This will prove to
be the case if Poisson-type approximations like that of Eq.
(19) of section 3.4 are made.) Taking the logarithm

10gG, ., ["]=1log G[h] Z logyz

Choose some fixed instantiation Sa(pD) of the random
FoV Sa(pp). Then the log-posterior p.g.fl. must be

108Gy, i [N =10g G[N]+ D 1 (, (%) -1og 7y, [h]
i=1

Since this equation corresponds to only one possible FoV,
we must produce an equation that corresponds to an
“average FoV.” So take the expectation of both sides:

1+ po(X)-logy, s, [h]

i=1

Taking the exponential we get the hedged posterior p.g.fl.:
k+l\k+] [h H}/’I(X )[h] Po () (30)

10gGy .1y, [h] = logG[h

5.3 PENT (single-sensor case)
According to Eq. (7), the PHD of the hedged posterior
p.g.fl. may be computed as
. é‘logGk Ikl
D X) = ——= ki 31
k+]\k+l( ) X [ ]

and according to the formula just before Eq. (7), the
posterior expected number of targets is:

N k+1]k+1 (X;:-H ) = j Ijk-ﬁ-l\k-*—] (X)dX (32)

5.4 PENT (multisensor case)

For the sake of clarity assume two sensors with FoVs
Po () =Pp(XX0) s Po(X)= Pp (XX
and likelihood functions
Ll )=, @ %X, Liz )= £2,@" %%

and Poisson false alarm models

2’1 :j’:wl’ CI(ZI):CIIHI(ZI)

A=, c(2)=c, (27
Begin by modeling the two sensors as a single imaginary
“pseudo-sensor.” This allows us to apply the reasoning for
the single-sensor case. (The discussion that follows is
simplified. See [14] for a full treatment.) Since an ideal-
observation set contains ideal observations collected from
each target by at least one (but not necessarily both)

sensors, we can take the probability of detection for the
pseudo-sensor to be the joint multisensor FoV

Po(¥)=1-(1=pp (X)) -(1 = P (X))
where we abbreviate P, (X)= Py (XX, X )

(33)
This is
the probability that at least one of the sensors will collect

an observation if a target with state X is present. Assume
that the pseudo-sensor collects observations of the form

Z= (Z1 z*) and has the likelihood function
(z‘ Zz)(x) =, X, Xk+1) fie (221X, Xk+1
Also, assume the following Poisson false alarm model:
ﬁ’ :ﬂLH—i_ﬂ“ﬁH’ 6(21,22)ZC}(H(ZI)'CEH(ZZ)
Then we assume that the approximation of Eq. (29) holds
for the pseudo-sensor:

(34)

GrpalM =Gl [ ], oz 7y l] B9
Then the corresponding hedg?d p-g.fl. will be
Gynal1= BN [ T7, e, [ G6)
and we compute PENT usin;Eqs (3 1) and (32):
N (G Xid) = j —ote (37)

6  PENT (ideal sensor dynamics)

This section sketches the derivation of PENT for two
cases: single-sensor, single-step look-ahead; and
multisensor, single-step look-ahead. Similar formulas can
be computed for multistep look-ahead (not described for
lack of space). See [14] for a full discussion.

6.1 PENT (single-sensor, single-step)

In section 3.4 we noted that in the single-sensor, single-
step look-ahead case the posterior p.g.fl. has the form

Gwlhl= Gkﬂ[h]'HzezM 7.[h] (38)
where
[ _ ﬂ.C(Z) + Dk+1\k [hpD Lz ] (39)
7= A(z)+ Dy, [Po L, ]
Gealhl=exp(Dy [(h-D(1-py))  (40)

This has the same form assumed in Eq. (29) for
application of the maxi-PIMS optimization strategy. So
we know that the hedged posterior p.g.fl. is



Gl = G- [ T 75, [N (41)

By Eq. (31) the corresponding PHD can be found by
taking the first functional derivative of the log-p.g.fl.:

Dyayjee (X) = (1= Pp (X)) Dy (X)
Po (X) Dy, (X)

fi
+ p ()A(i ): N
izzll ? AC(17(X;)) + Dy [Po Ly, ]
By Eq. (32) PENT is the integral of this:

N K+1[K+1 (X;H) = Dk+1u< [1-pp]
) . (42)
N o Ac(n(X,))
o(X)-[ 1= o
+iZ:1: Po(X) ( Ac(n(%)) + Dk+1\k[pD Lq(ii)]J

where we have applied partial. This formula is used with
the PHD filter of section 3.3. It can be modified for use
with the MHC filter of section 3.5 by using Eq. (24):

N
Nk+1\k+1(xi+1) = qu fi[1-po]
=1

Ac(n(X;))
A&+ 6 flpoblys,)]
When there are no false alarms (A = 0) this reduces to

Neioa Ke) = 20, F,[1= Po 1+ P (%)) (43)
j=1

This formula can be computed in closed form if the FoV
has the Gaussian form

Po (X) = eXp((Ak+|X - A:+1X;+1 )T L_I(Ak+1x - A:+|Xsl;+1 ))

+Z pD()A(j)' 1-

6.2 PENT (multisensor, single-step)

If we apply the pseudo-sensor approximation of section
5.4 then Eq. (42) can be directly applied to get a formula
for PENT in the two-sensor, single-step look-ahead case:

N
Nk+1\k+1(xkl+1:Xk2+1) = ij' fi[1-po]
=

) (X))
AmF )+ G fulPol s Ly ]

When there are no false alarms this reduces to:

N
N X2 = (0, 11 po 1+ P (X)) (44)
j=1

N
+Z|§D(kj)' 1
j=1

7 PENT with non-ideal sensor dynamics

We extend PENT to sensors such as those carried on
UAVs, assumed of known constant number. Sensor
motion is limited by physical or other constraints, and
these motions are influenced indirectly by choosing
control vectors Uy rather than directly by choosing future
sensor states x;H. Also, we assume that:

(1) each platform carries one sensor;

(2) for each sensor, each target generates at most one
observation and no observation is generated by more than
one target;

(3) each observation collected from a target is
contaminated by the sensor noise process;

(4) for each sensor, any multitarget observation is
contaminated by a Poisson false alarm process; and

(5) for each sensor, the state of that sensor is observed
by an internal actuator sensor whose single observation
may be contaminated by noise, registration error, etc.

In [14] we additionally assume that transmission of
observations may be interrupted. We do not do so here
because things simplify considerably otherwise.

We have three goals: derive the PHD predictor (section
7.2), corrector (section 7.3), and PENT (section 7.4).
Mathematical preliminaries are discussed in section 7.1.

7.1 Preliminaries

We begin by generalizing the foundations described in
section 2. When sensors are dynamic and sensor states
cannot be controlled directly, we regard targets and
sensors as a single stochastically evolving multi-object
system. The joint state of the system will have the form

X ={X,... X;}
where N=n+n" with the number n” of sensors known
and fixed, the number n of targets random, and where
each X can be a target state or a sensor state: X=X or
x=x". Functions h(X) are defined on both target and
sensor states: h(x) if X=x and h(x") if x=x". In
particular, PHDs are functions defined on the joint state:
D(x) if x=x and D(x") if x=x". So, predictor
and corrector equations for such joint PHDs always have

two parts: a predictor for targets, a predictor for sensors, a
corrector for targets, and a corrector for sensors.

Similarly, probability generating functionals lek[ﬁ] are

defined on joint functions h(X).

Observation-sets will have the form

2={Z,,.,2,}

where m=m+m’ with the number m’ =n" of
actuator-sensor observations known and fixed, the number
m of sensor observations is random, and Z is a sensor or
actuator-sensor measurement: 2=z or Z=2 .

Because we assume that actuator-sensor observations
are perfectly detected, we may assume that the joint PHD
on each sensor is actually a probability density:

[ By xax" =1 (all i) (45)

7.2 PHD predictor (single dynamic sensor)

Joint PHD predictor equation (targets): Make the
same motion assumptions stipulated in section 3.3. Then
the predictor equation for the joint PHD [V)Mk (X) for

target states X = X is the usual PHD predictor Eq. (16):
Dy (X) = bk+1\k (X)

3 (46)
+ [ Sk (W) Ty (X W) Dy (W)l

- Joint PHD predictor equation (sensors): Assume that
the between-measurements motion of each sensor is

described by a Markov transition fk*«il\k (y" [x™). Then



the predictor equation for the joint PHD for sensor states
% =x" is an ordinary Bayes filter time-update:

Dk+1\k x")= I fki+1\k " w )Ijk\k (w)dw"
7.3 PHD corrector (single dynamic sensor)

(47)

The corrector equation for the joint PHD is as follows:
Joint PHD corrector equation (targets):
probability of detection and likelihood for i™ sensor be
Po(¥)=Po(6X) s L ()= Fl (@' XX,
respectively. Assume that the observations are corrupted
by Poisson false alarm processes
ﬂ‘l =2‘L+1’ CI(ZI)=CII<+1(ZI)
Then the corrector equation for the joint PHD Dk+uk+1 X)

Let

for target states X =X is:
Dyt ) = Dy [1- pID,x]‘ D (X)
u Ijk+1\k [ pli:),x Lizl’x] : Dk+1|k (x)

+ z [N} i B N [
dez, A€(Z) + (D X Dy [ Po L1
Here we have abbreviated:
PO (X") = pD<x XM L, (X = £ @ [ xxT)
(DxD)[p .[D(x) D(x*') (XX ydxdx"
Joint PHD corrector equation (sensors):  Assume
that the state X" of the i’th sensor is observed by an

internal actuator sensor, and that such observations z" are
governed by a likelihood function

L () = @ [x™)

Then the corrector for D

(43)

e (X) for sensor states X =x"

is an ordinary Bayes filter Bayes’ rule data-update:

_ ; L*Z', () Dy ™"

Dk+1|k+1 (X ) T
D[l ]

Egs. (48) and (49) are derived as follows. As in section
3.4, everything hinges on finding a simple formula for
I:k+] [gh] .
observation model is linearized as follows:

Linearized actuator sensor p.g.fl. : We assume that
actuator sensor observations are governed by

kicf[g hl= exp( 1+ Dk+1\k[hp ])

(49)

Towards this end, the joint sensor-target

where
P, (x)=[g(@)- 1., (2" x")dz’
- Linearized sensor p.g.fl.:
observations are governed by

Frlgh]
= exp(— Nk +(Dk+l|k x Ijk+]\k)[(h xD)(1—=pp + Pp pg)])
where

We assume that sensor

¢ =[9(2) c..(2)dz
- Sensor false alarm p.g.fl.: Sensor observations are
corrupted by a Poisson false alarm process of the form:

Fe[g] = expl- 2+ Ac, )
- Total linearized sensor p.g.fl.: If the previous three
models are conditionally independent then:

—1=A=Ny y +4c, + Ijk+l\k[ﬁp;]

+ (D X Dy [ x DAL= Py + P Py )]
From Eq. (15) we get the following posterior p.g.fl.:

k+1[g ﬁ] =exp

Gk+uk[ ] k+1[h] Yy [h ]‘Hzez VZ[h] (50)
where
(7= 222+ O <Deadl>DPoL] 5
AC(2) + Dy X Dy )L Po L, 1
1 k+1\k[h|— ] 52
7D L ©?

Geualh] = exp((Dy x By I x1-1)(1 - pp)])  (53)
If we follow the procedure outlined in section 3.4 we get
the claimed Eqgs. (48) and (49).

7.4 PENT (single dynamic sensor)

The posterior p.g.fl. of Eq. (50) has the form assumed in
Eq. (29) for application of the maxi-PIMS optimization
strategy. Let X be the predicted sensor state and assume

that the actuator sensor likelihood has the additive form
Lz (X*) = fkil(Z* | X*) = fWk'u (Z* - 77;+1(X*))

where we abbreviate 7" (x") =17, ,(x"). Then from Eq.

(50) the hedged posterior p.g.fl. is

Gk+1\k+][h] G[h ]7 " (Xy) H}/l](x)

If we follow the procedure of section 5 we end up with the
following formula for the PENT:

Nk+1|k+1 (U= (Ijk+1\k X Dk+1\k 1= po]

Ae(n(%,)
+Z Po (%1.%,): ( AC((%,)+ (Dy X Dkﬂk)[pDL,,@i)]J

If there are no false alarms and if this equation is modified
for use with the MHC filter of section 3.5 then

Nicason (U0 = D@, (F x T o1+ Py (%,%,)) (59
j=1

fo (X)) =N_. (X" =X;) the

distribution of the sensor and where uy is the control-
vector at time-step K.

PD(X)

(54

where denotes state

7.5 PENT (multiple dynamic sensors)

The pseudo-sensor approximation described in section 5.4
can be applied to the dynamic-sensor case in much the
same way as in the non-dynamic case described in section
6.2 [14]. For lack of space, we do not explore this further.

8 Conclusions

In this paper we have described a general system-level,
control-theoretic approach for the management of mobile
sensors whose states are indirectly observed by internal
actuator sensors, but assuming no communication
interference. Preliminary two-sensor, single-step look-
ahead simulations using PENT with an MHC filter have
demonstrated good sensor management behavior [3].



Ultimate proof of the utility of the approach depends, of
course, upon continued demonstration of good behavior
under increasingly realistic conditions. Even so, genuine
progress depends on investigation of the deep stochastic
structure of multisensor, multitarget sensor management
problems. In [7] we argued that deeper insight is required
if the inherent—but less than candidly acknowledged—
computational “logjams” of the “plain-vanilla Bayesians”
are to be surmounted. Indeed, the “plain-vanilla Bayesian
approach” is an obstacle to such insight because of its
obscurantist insistence that modeling and computational
implementation must be “straightforward” (i.e.,
simplistically intertwined) and that anything else is
“obfuscated.” Deeper investigation is precisely what
FISST dares to attempt.

This having been stated, our work still has significant
limitations. We must assume that the sensors are fixed in
number. This precludes the possibility of sensors entering
or leaving a scenario. We must assume that each platform
carries exactly one sensor. Our basic scheme is still
centralized. Future work must address such issues.
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