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Abstract – In decentralized tracking a single situation picture is 
formed by correlating (associating) and merging tracks from 
different track sources. A problem rarely addressed in this 
connection is that of maintaining correct track numbers over 
time. The track numbers may have to be reassigned, for example 
when the track sources make mistakes like swapping tracks or 
picking up false measurements. This paper presents a coherent 
Bayesian approach to handling the dynamics in track 
correlation, where the basic idea is to consider track-to-target 
correlation instead of the more conventional track-to-track 
correlation.  
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1. Introduction 
This paper deals with the art of forming a situation picture 
using data from several track sources, that is, 
decentralized tracking. Although decentralized tracking 
may not be the optimal architecture from the performance 
point of view, often this is the only possibility given 
sensors with built-in trackers or when there are severe 
restrictions on communications capacity. The challenge is 
thus to correlate (or associate) local tracks to local tracks, 
to determine which of them represent the same target, and 
then somehow form a single system track for each target. 
The track-to-track correlation problem has been studied a 
lot; for an overview, refer to e.g. [1]. 
    But there is more to it. Even though the track-to-track 
correlation is or appears correct at one time, it does not 
necessarily mean it remains so in the future. Various 
phenomena do occur, apart from mistakes due to statistical 
fluctuations. Some examples are:  

• Local tracks may be swapped at one source, and 
unswapped at another 

• False local tracks may be correlated to genuine 
• Tracks may split (more targets than originally 

detected) 
• Tracks may diverge because of false measurement-

to-track associations, or gaps in coverage 
• Incorrectly diverged tracks may come close again 

 

    In practical applications it is very important that the 
track number given to the system track remains the same 
as long as the system track represents the same target, as 
usually all information about the target is connected to the 
track number. However, the work on track correlation 
rarely even mentions track numbering (for an exception, 
see [2]). Track numbering is usually left to ad hoc 
schemes.  
    The basic idea in this paper is that we should not 
consider track-to-track correlation in the first place. 
Instead  track-to-target correlation is the fundamental 
issue, and here the target is represented by a target 
number. In case local tracks from different sources are 
assigned to the same target, it follows that the tracks are 
correlated to each other. 
    The advantage of this approach is that it makes it easy 
to formulate the various correlation hypotheses and to 
evaluate them recursively in a Bayesian manner, and also 
to take into account a lot of factors that are important for 
correct correlation. 
    The idea of correlating tracks to targets, rather than 
tracks to tracks has also appeared in [3], albeit in an 
entirely different context, namely Over-the-Horizon radar 
tracking. 

2. Correlation Hypotheses 

2.1 Track numbers vs. target numbers 

Let S denote the set of sources contributing with local 
tracks (each source may or may not correspond to a sensor 
depending on whether the tracker is a single or 
multisensor tracker). Each source Ss ∈ contributes with a 
set sL of local tracks. (In reality one is likely to consider 
subclusters of nearby tracks as input to the algorithm, and 
in that case S and the sL refer only to one subcluster at a 
time.) Each element ssi LL ∈  is thus a local track, and we 
do not distinguish between the track and its track number. 
Suppose finally that the targets involved form a set T  
with elements rT . As the set of targets is unknown (it is 
the task of the correlation algorithm to make the best 
possible estimation of the set), T may contain both firmly 



established objects from before, and new potential targets 
to be considered. An example of track and target 
numbering is shown below in Fig. 1.  
 

L11 T1

L13 T2
L21 T2

L12 T4

L22 T3

 
 
Fig. 1. An example on how target numbers relate to track 
numbers. 
 
Source 1 provides local tracks 1211, LL  and 13L , and 
source 2 has 21L  and 22L . The algorithm has assigned 
target 1T  to 11L , 2T  to 13L  and 21L , 3T  to 22L , and 4T  
to 12L . Here thus 13L  and 21L  are considered to represent 
the same target. 
     The above is just one example of correlation; for 
example, the algorithm might have concluded that 13L  
and 21L should represent two different targets or that 12L  
and 22L  should be the same, or that 3T  and 4T  should be 
swapped. Each set of assignments  represents one 
correlation hypothesis, and each hypothesis assigns the 
targets to zero or more of the local tracks (zero meaning 
that the target does not exist or is not tracked). Any 
assignment is permitted, except that no target may be 
assigned to more than one local track from the same 
source.  

2.2 Hypotheses 

The hypotheses can conveniently be represented by a table 
as follows (this example is unrelated to Fig. 1): 
 

Table 1. A representation of correlation hypotheses 
T1 T2 T3 

L12 L11  
 L21  
 L32 L31 
 
Here source 2 provides one track, while sources 1 and 3 
provide two tracks each. Further it is assumed that there 
are two targets from before, and that we allow at most one 
new target. In the hypothesis shown in the table, the first 
track from the third source, 31L , does not go with any of 
the of the hitherto handled targets, but instead represents 
either a false track or a new real target. One interpretation 
is that there were in fact three targets, but due to poor 
sensor resolution, no single sensor has yet detected all 
three. The number of possible hypotheses with local tracks 
as above, and two old plus at most one new target, is 

108636 =⋅⋅ , and it is up to the correlation algorithm to 
decide which one is the most likely. The number of 
hypotheses explodes with the number of tracks and 
targets. 

   In forming hypotheses, note that if we allow more than 
one new target, then some apparently different hypotheses 
will be the same. If there were a 4T  column in the table 
above, then putting 31L  under 4T  instead of  3T  would 
not be a new hypothesis.  
   The key idea behind the correlation and numbering 
algorithm is that we consider a large number of correlation 
hypotheses ...1, =nHn , where each hypothesis stands for 
a possible assignment of targets (or target numbers ) rT  to 
local tracks siL , and that we estimate the probability 

)( nHp  of each hypothesis recursively at prediction as 
well as updating steps. 

2.3 Prediction step 

The prediction step amounts to computing the 
probabilities ),( −

kn tHp  from earlier values ),( 1
+

−kn tHp , 
taking into account that mistakes like track swapping or 
track loss could occur in the meantime. The probability 
mass tends to go from the most likely hypothesis to other, 
less likely, hypotheses, as there is always some risk that 
the previous assignments do not hold because of tracking 
errors. Especially under difficult conditions, such as dense 
target situations, inadequate sensor coverage, sparse 
measurements, etc., there is an increased  probability for 
tracking errors. Expressing these probabilities is however 
very difficult. Some simplification can be made along the 
lines described in Sec. 4.  

2.4 Updating step 

The updating step is preferably (but not necessarily) based 
on Bayes’ rule, according to which 
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where ( )nHzp  is the probability of obtaining the 
observed tracks and their observed positions etc. assuming 
that nH  is true. However, in order for Bayes’ rule to be 
applicable in the form given above it is important that the 
sequence of observations is independent. Handling 
dependent observations in a Bayesian framework is 
complicated and requires accurate knowledge of the 
nature of dependencies.  We avoid this problem by not 
updating too frequently, e.g., the tracks must have moved 
a long way compared to the positional uncertainties 
involved. Failing to do so can have the result that one of 
the hypotheses will incorrectly dominate over the others. 
   For simplicity we will here base the calculation on track 
positions only; extensions to include more data like 
velocities and other attributes are relatively 
straightforward.  
   Each hypothesis nH  can be represented as in Table 1. It 
is defined by a set T of targets, each corresponding to a 
target number rT  and (unknown) true positions rx . To 
each target corresponds a set nrL of local tracks 

rsjL , with 
indices indicating that the track is the jth from sensor s  
corresponding to target r . Each track has the position 



rsjz . (For example, in Table 1, the set 2nL  consists of 
11L , 21L  and 32L ).  The positions are described by 

probability densities ( )xzf sj ,  around the true positions. 
The probability of finding the track within a small volume 
dz around 

rsjz  is dzxzf rsjsj rr
),( . The probability of 

finding all the tracks corresponding to all targets at their 
given positions is then 

( ) ( )N

T L
rsjsj dzxzf

r rsj

rr∏∏ ,  (2) 

where N  is the total number of local tracks in the cluster. 
The true positions rx  are not known at all. They could be 
found in any volume element rdx  with corresponding 
probability rdxρ  where ρ  us a typical target density 
(probably a tuning parameter). We have to integrate over 
all possible values, that is, 

( ) ( ) r
T L

rsjsj

M

n dxxzfHzp
r rsj

rr

n ∏ �∏∝ ,ρ  (3) 

where nM is the number of targets in this hypothesis, and 
where the factors containing dz are left out as they are the 
same for all hypotheses. 
    The usage of probability densities in this way is an 
approximation as one neglects the dependence between 
the probability densities stemming from the same target 
(e.g. if the target makes a sudden maneuver, the error 
tends to have the same sign in all tracks representing this 
target). There are techniques in the literature to improve 
the correlation accuracy in this respect, see e.g. [1], Sec. 
9.6.3, and references therein. Such methods can also be 
included in the Bayesian track correlation described here. 
    There is however a complicating factor that should not 
be neglected, and that is visibility. Each sensor may have 
a limited capability to see a certain target. The sensors 
may have different coverage areas in space or 
electromagnetic spectrum, and thus it is perfectly possible 
that a target is not seen by some of the sensors, although it 
is within the sensors’ nominal range. As a result, the 
algorithm could for example force a ground target track to 
be correlated with an air target track. The probability that 
a target rT  is seen by a source s will be expressed by a 
visibility factor 10 ≤≤ srK . Likewise, the probability that 
the target is not seen by the source is srK−1 . As an 
example, for the hypothesis represented by Table 1, we 
should include visibility factors according to  
 

Table 2. Visibility factors 
T1 T2 T3 

K11 K12 1-K13 

1-K21 K22 1-K23 
1-K31 K32 K33 
 
Evaluating the probabilities for the hypotheses according 
to visibility then yields 
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and sN  is the number of sources involved. 
    One should however be cautious when using the 
visibility factors in (4) as (1) is meant to be used 
recursively, and the visibility factors will not change 
rapidly. As a result the same information would be entered 
over and over again into the recursion loop, and this is of 
course not correct, unless the visibility factors are 0 or 1. 
(Actually using only 0 or 1 for the visibility is an easy 
albeit suboptimal way out of this problem. Another way 
could be keeping the visibility out of the recursion loop, 
and only applying it at the output.) Similar arguments hold 
if target classification or other attributes are incorporated 
in the application of Bayes rule. Using classification 
information is important to prevent correlating e.g. friend 
and foe. 
    In practice one would usually assume Gaussian 
distributions for the probability densities. Then the 
uncertainty of a track is characterized by its covariance 
matrix 

rsjP , and the probability density is given by  
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where D is the number of dimensions. Then the 
integration in (3) can be carried out explicitly, leading to a 
somewhat complicated, but definitely useable, expression. 

3. Simplified representation of hypotheses 
The number of hypotheses that can represent a cluster may 
be very large and it can be very difficult to manage all the 
corresponding hypotheses. We will therefore introduce a 
significantly simplified representation, where each local 
track and each target is handled individually. The steps 
are explained in the following sections, and show how the 
probabilities for the hypotheses can be computed from the 
simplified representation. 

3.1 Characterization of  tracks 

In the simplified representation each track siL  is 
characterized by its most likely target siT  and the 
probability sip  that this is correct (the 

rsjf of Sec. 2.4 
does give the probability density assuming that we know 
the corresponding target, but we can’t generally be certain 
that the assumption is correct). The probability that any 



arbitrary target aT  in the cluster is the correct one for siL  
is then given by  
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Of course one can improve on this as all alternative targets 
need not be equally likely. 
    Each correlation hypothesis nH  stands for an 
assignment )( sin LT  of the targets to tracks. The 
probability for the hypothesis based on the assignments 
can thus be written 

( ) ( )( )∏=
siL

sinsin

L
LTLpHp ,  (8) 

3.2 Characterization of targets 

Each target rT  is characterized by the probability T
rp  that 

this target indeed exists and is trackable (maybe it has run 
out of sensor coverage, or ceased to exist, or never 
existed). Introduce the function 
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Each hypothesis is characterized by the set of targets 
involved. The selection of targets will then have the 
probability  

∏=
r

r
T

n
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3.3 Probabilities for the hypotheses 

To compute the probability of a hypothesis nH from the 
simplified representation one has to  
 
i.  Note the selection of targets in the hypothesis 
ii. Compute the probability factors )( n

L Hp  for all 
hypotheses consistent with the selection of targets 

iii.  Compute the approximate conditional probability  

�
=

m
m

L
n

L

n
C

Hp

Hp
Hp

)(

)(
)(  

(11) 

where the sum runs over all hypotheses consistent 
with the selection of targets of nH  

iv.  Compute the probability for nH  from 

)()()( n
T

n
C

n HpHpHp =  (12) 

The whole procedure is illustrated by a numerical example 
in the Appendix. 

3.4 From full to simplified representation 

We have now illustrated how to go from the simplified 
representation (i.e. data are stored individually for each 
track and for each target) to the full (i.e. the track/target 
tables.) We must also be able to go back to the simplified 
representation. This is in principle very straightforward. 
First make sure that the hypotheses are properly 
normalized. Pick the target numbers that are assigned 
according to the most likely hypothesis, and then add the 
probabilities of all hypothesis assigning the target number 
in question to the track. Likewise, add the probabilities of 
all hypotheses where the first target number is included, 
etc. Please refer to the Appendix for a numerical example. 
     A more sophisticated version of the simplified 
representation could consist in storing more than one 
target number and its probability in each track. Although 
this could be very helpful in allowing secondary 
hypotheses to grow, it adds significantly to the complexity 
of the algorithm. 

4. Summary 
The complete processing loop, including the optional 
simplified representation, is shown in Fig. 2. 
 

Simplified
representation

Prediction

Reconstruction
of hypotheses Updating

Actions

 
 

Fig. 2. The main steps in the processing loop. 
 
Each local track carries information about the most likely 
target and the probability that the assignment is correct, 
and there is also a list maintaining the targets and the 
probability that the target in fact exists. 
    The prediction step is very difficult to express other 
than empirically. Ideally each tracker should give an 
estimate for each track that the track/target linkage is 
broken. This could e.g. be expressed as a probability per 
time unit, and should depend on e.g. on target density, 
false alarm density, sensor coverage, sensor 
characteristics. 
    At the reconstruction step, the hypotheses are (in 
principle) expressed as track/target tables, such as Table 1, 
and the probabilities for the different hypotheses are 



computed from (12). There must also be allowance for 
new targets to appear. 
    At updating, new probabilities for the hypotheses are 
computed using Bayes’ rule, that is, Eqs. (1, 3). 
Occasionally also visibility (Eq. (4)) and other attributes 
can be included.  
    If the number of hypotheses is large one should not try 
to evaluate every one. It is sufficient to look at a subset of 
hypotheses, namely those that a naïve correlation 
algorithm would produce, and those hypotheses that can 
be formed from the naïve by a limited number of steps 
such as swappings or changing a single track/target 
assignment. One may also similarly start with the 
hypothesis from the previous cycle and evaluate a limited 
number of deviations from that. 
    The resulting most likely correlation hypothesis may 
deviate from the currently valid, and then actions should 
be taken, with or without operator approval. These actions 
consist of effecting track swapping, track split/merge, 
removal of target, creation of target, etc.  
    Finally, the simplified representation is recomputed as 
described in Sec. 3.4 and stored in the tracks and target 
list. 

5. Conclusion 
We have presented a technique for combined track-to-
track correlation and track numbering. Although one 
cannot say there is any standard way of doing the task, the 
approach here has many advantages over what is usual: 
 
• Sound Bayesian evaluation of different correlation 

hypotheses 
• Continual updating and recorrelation when needed 
• Allows many factors to be taken into account which 

really matter, such as visibility and probability of 
tracking mistakes 

 
Admittedly some of the input parameters may be difficult 
to obtain, and admittedly the approximations when using 
the simplified representation, are quite rough – but we still 
consider this method as superior to those that cannot 
consider the complicating factors at all. 
    Unfortunately, the impacts of the approximations have 
not yet been fully analyzed. Nor have we made any 
comparison of the performance with standard methods, 
much because we are not aware of any such standard 
method for track numbering. However, a prototype has 
been implemented and tested with live data in connection 
with a system for distributed correlation, i.e. correlation 
simultaneously taking place in different nodes over a 
national network. The results so far look very good.  

Appendix: A numerical example 
To clarify the transitions between the simplified 
representation and the full, we here give a numerical 
example. The notation is taken from Sec. 3. 

    Suppose we have one track 11L  from source 1, and one 
track 21L  from source 2. They have been assigned 
different target numbers, 1T  and 2T , so that 

7.0,

8.0,

21221

11111

==
==

pTT

pTT  

Moreover, we are rather sure that 1T  is a genuine target, 
while we are less certain about 2T : 

6.0

99.0

2

1

=

=
T

T

p

p  

We want to know if the tracks should have the same target 
number, and if so, which number, or if they should still be 
considered to represent different targets. The hypotheses 
are 1H  (no change): 
 

T1 T2 
L11  
 L21 

 

2H , both are 1T : 
 

T1 T2 
L11  
L21  

 

3H , both are 2T : 
 

T1 T2 
 L11 
 L21 

 
and the unrealistic 4H , where both target numbers are 
replaced: 
 

T1 T2 
 L11 
L21  

 
From the previously given equations we compute 

006.06.001.0)(

396.04.099.0)(

594.06.099.0)()(

3

2
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Note 1: With respect to target selection, 1H  and 4H  are 
the same hypothesis, therefore the probabilities as written 
here add up to more than 1.  
Note 2: As the selection “Neither 1T  nor 2T ” is not 
possible here (as we have chosen not to include a 3T  
column) the probabilities for the three selections add up to 
slightly less than one. Strictly the probabilities should be 
renormalized so that their sum is one, but since what we 
need is only to find the most probable hypothesis this is 
not needed. 
Next, compute the probability factors )( n

L Hp  
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and the conditional probabilities 
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and finally the resulting probabilities 
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Thus the first hypothesis is the most likely and the tracks 
should not be merged.  
    Next we will show how to go back to the simplified 
representation. In the example given above, the 
normalized probabilities are  
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The first hypothesis is the most likely one, thus 
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We did not get back the original values, but that should 
not have been expected. In general a very large number of 
probabilities in the complete set are represented as a 
smaller number of probabilities; this is a process that 
cannot be reversed.  
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