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Abstract – Standard target state estimation schemes typically
use detections as their source of measurements, which are pro-
duced by thresholding the output of a sensor’s signal processing
stage. This work exploits a track-before-detect (TBD) technique,
which simultaneously detects and tracks a target without needing
to threshold the sensor data. By removing the need for threshold-
ing, TBD can potentially detect and track targets with a much
lower signal-to-noise ratio (SNR) than conventional systems.

The signal processing that is modelled in this work is designed
to match that which might be found in a sensor such as radar. In
these systems, the data used by a tracking filter is the magnitude
of a complex spectrum. This gives rise to a signal in Rayleigh
distributed noise. This paper presents a particle-based TBD fil-
ter, operating on the output of this signal processing stage, which
estimates the target state incorporating target existence, position,
velocity and target signal strength. The main contributions of this
work are the development of an efficient method of calculating the
probability of target existence and the derivation of a TBD filter
which operates in Rayleigh noise. It is shown through simulation
that a target can be detected and tracked with an SNR as low as
3dB.

Keywords: Track-before-detect (TBD), particle filter, target ex-
istence, Rayleigh, Ricean.

1 Introduction

A typical tracking filter will form detections by threshold-
ing the output of the sensor’s signal processing stage
and then filtering the resulting detections. The detection
threshold is generally chosen as a compromise between the
potential number of false alarms and the number of missed
detections, based on known noise statistics and signal mod-
els. This implies that targets with a low signal-to-noise ratio
(SNR) may not be reliably detected if the signal power is
below the required threshold. Track-before-detect (TBD)
techniques eliminate the need for a detection threshold,
simultaneously detecting and tracking targets with much
lower signal-to-noise ratios than conventional trackers.

Particle filter implementations of track-before-detect
were introduced by Salmond et. al. [1, 2], giving several ad-
vantages over previous approaches, including a reduction in
computation complexity. Ristic [3] has extended the work
of Salmond by providing a detailed explanation of an im-
plementation, giving results of the detection performance of
a particle filtering TBD algorithm and deriving the Cramér-
Rao lower bound on the estimation error for the technique.
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The work of Boers and Driessen [4] develops a TBD al-
gorithm similar in structure to Ristic but extended to con-
sider multiple targets. The algorithm presented in this paper
is based heavily on that of Ristic, with the main differences
being that the likelihood function is modified to more ac-
curately match radar signal processing and a more efficient
method for calculating the probability of target existence is
developed.

In this work the simulated data used as the input to the
tracker is a uniform grid, with intensities defined for each
bin. The intensities are modelled as the magnitude of a
complex spectrum, which corresponds to the output of sig-
nal processing stages in operational sensors such as radar.
The envelope of complex Gaussian noise is Rayleigh dis-
tributed and the magnitude of a signal in complex Gaussian
noise is Ricean distributed [5]. These densities are properly
incorporated into the likelihood function of the TBD filter.

This paper introduces a TBD algorithm for processing
data with an efficient method for calculating the probability
of target existence. The algorithm simultaneously estim-
ates target parameters including existence, position, velo-
city and signal intensity. Section 2 sets the problem math-
ematically, with a summary of the models used for target
motion and the assumed signal processing model. Section 3
derives the filter, incorporating target existence, while Sec-
tion 4 details the implementation of this filter using sequen-
tial Monte-Carlo techniques. Section 5 gives details of the
simulation used to test the filter and shows results gained
from repeated simulation. The final section summarises the
key contributions of this paper and offers further opportun-
ities for research.

2 Target and Sensor Models

2.1 Target Model

The target state is represented by a five-dimensional state
vector ψk with the elements xk, ẋk, yk, ẏk and Ak. These
correspond to position and velocity in the x and y directions
and the intensity of the target, which could be related to
the target’s sensor cross-section. The time evolution of the
target state is modelled as a linear Gaussian process

ψk+1 = Fψk +uk, (1)

where F is the process transition matrix and uk is a Gaus-
sian noise process with zero mean and covariance Q.



Along with target position, this work attempts to detect
the existence of a target in the data, in analogy with [6, 7].
The random variable Ek ∈ {e, ē}, denotes the existence or
non-existence of the target. This process is modelled as a
Hidden Markov Model (HMM), where the transition rela-
tions can be defined as

• pee = P(Ek = e|Ek−1 = e), target stays alive

• pēe = P(Ek = ē|Ek−1 = e), target dies

• peē = P(Ek = e|Ek−1 = ē), target is born

• pēē = P(Ek = ē|Ek−1 = ē), target stays dead,

with the Markovian constraints that

pee + pēe = 1, and (2)

peē + pēē = 1. (3)

Hence the Markov transition matrix is completely specified
by defining the target birth probability, peē, and the target
death probability, pēe.

Equation (1) describes the evolution of the target state
when the target is assumed to exist at both times k and k+1,
hence (1) describes the target state density p(ψk|ψk−1,Ek =
e,Ek−1 = e). However, if the target does not exist at time
k− 1, there is no valid state to evolve into time k and the
prior density, p(ψk|Ek = e,Ek−1 = ē), is required. The prior
is chosen to be uniform in the state space over a volume
related to the surveillance region.

2.2 Signal Processing Model

The measurement model used in this work is as close as
possible to that which might be used in an operational
sensor, such as radar, without describing details such as
beam-forming or the receiving process. It is assumed that
a target signal can be represented by a complex sinusoid in
two dimensions. This signal can be written in terms of the
target return amplitude, Ak, and the location coordinates, xk

and yk

wk(ψk) = Ak exp

(
j2π

[
xk

l
L

+ yk
p
P

+φk

])
, (4)

where φk is some arbitrary phase. The indices l ∈ {0 . . .L−
1}, p∈ {0 . . .P−1} correspond to the signal indices, which
could be for example time (related to range) or receiver in-
dex (related to azimuth).

The resulting signal is windowed [8] in each dimension
to reduce peak side-lobe levels, before a three-dimensional
discrete Fourier transform (DFT) is applied. This gives data
which is indexed over the location coordinates x and y. In
order to remove the influence of the signal’s unknown phase
component, φk, the magnitude of the spectrum in each DFT
bin forms the set of measurements for a single time index,
k. Rather than use the entire resulting spectrum, which may
have a large number of samples in either dimension (for
example this simulation uses 128 bins for each), a small
section around the location of the target is extracted to form
the set of measurements used by the filtering process. In
this case a contiguous subset of bins is chosen with sizes
X ≤ L and Y ≤ P.

x

y

5 10 15 20

5

10

15

20

Fig. 1: Simulated sensor data.

Figure 1 shows data simulated using this method. Each
axis contains 20 bins from the 128 total bins used in each
dimension for this simulation. A single 20 dB peak is dis-
played in the data at location (8,8). It is apparent that the
peak is smeared along both axes, due to the broadening of
the peak by the DFT windowing functions.

Following the radar model described above, the measure-
ment equation is described in terms of each DFT bin, and
takes the form

z(x,y)
k =

{
h(W (x,y)(ψk),ω

(x,y)
k ), target present (Ek = e)

h(0,ω
(x,y)
k ), otherwise (Ek = ē),

(5)
where ω

(x,y)
k is a complex, zero mean Gaussian noise pro-

cess independently and identically distributed in the real
and imaginary axes, with variance σ2

ω . The function
W (x,y)(ψk) represents the signal wk(ψk) after the window-
ing and DFT process, indexed by bin in x and y coordin-
ates. Equation 5 results in two corresponding likelihood
functions. The signal likelihood has a Ricean distribution
[5]

P(z(x,y)
k |ψk,Ek = e) =

z(x,y)
k

α2 I0

(
z(x,y)

k W (x,y)(ψk)
α2

)

× exp

(
−

[z(x,y)
k ]2 +[W (x,y)(ψk)]2

2α2

)
, (6)

where α2 = σ2
ω/2 is related to the noise variance, I0(·) is

the modified Bessel function of order zero and z(x,y)
k must

be non-negative. The noise likelihood has a Rayleigh dis-
tribution [5]

P(z(x,y)
k |Ek = ē) =

z(x,y)
k

α2 exp

(
−

[z(x,y)
k ]2

2α2

)
, (7)

where z(x,y)
k must again be non-negative. The noise in each

bin is assumed to be independent and so the complete likeli-
hood function is then a product over all of the contributions



from each bin

P(zk|ψk,Ek = e) =
X

∏
x=1

Y

∏
y=1

P(z(x,y)
k |ψk,Ek) (8)

P(zk|Ek = ē) =
X

∏
x=1

Y

∏
y=1

P(z(x,y)
k |Ek). (9)

The particle weighting function (see Section 4) is written
in terms of a likelihood ratio

`(·) =
P(·)

P(z(x,y)
k |Ek = ē)

, (10)

where the most important case is `(z(x,y)
k |ψk,Ek), which us-

ing (6) and (7) gives

`(z(x,y)
k |ψk,Ek) = exp

(
− [W (x,y)(ψk)]2

2σ2
ω

)

× I0

(
z(x,y)

k W (x,y)(ψk)
σ2

ω

)
. (11)

The complete likelihood ratio for a single time k is used
in the filter derivation of the following section and can be
defined in terms of (9), giving

L(·) =
P(·)

P(zk|Ek = ē)
. (12)

3 Filter Derivation
The desired state estimate at time k, ψ̂k, will be a function of
the joint probability density function, p(ψk,Ek|z1:k), which
describes the state of the target, including its existence or
non-existence. This density can be expanded as

p(ψk,Ek|z1:k) = p(ψk|Ek,z1:k)P(Ek|z1:k). (13)

The two factors on the right-hand side of (13) are thus
required for calculation of the joint density. Since Ek is
Boolean, the following relation must hold

P(Ek = ē|z1:k) = 1−P(Ek = e|z1:k), (14)

and hence there is only need to calculate one of these quant-
ities, which in this case is chosen to be P(Ek = e|z1:k), the
probability that the target exists. Furthermore, the dens-
ity p(ψk|Ek,z1:k) is not physical if the target does not ex-
ist, so the only quantities of interest are the posterior target
density, p(ψk|Ek = e,z1:k), and the probability of existence,
P(Ek = e|z1:k). For this reason, and for notational brevity,
Ek will be assumed to refer to Ek = e unless explicitly spe-
cified in the remainder of this paper.

3.1 Joint State Densities

The density of ψk required by (13) can be expanded over
the target’s existence at time k−1

p(ψk|Ek,z1:k) = ∑
Ek−1∈{e,ē}

p(ψk|Ek,Ek−1,z1:k)×

P(Ek−1|Ek,z1:k). (15)

Equation (15) shows that the desired density, p(ψk|Ek,z1:k),
can be separated into a mixture of two calculable densit-
ies. The first of these, p(ψk|Ek,Ek−1 = e,z1:k), called the
continuing density in the sequel, describes the case where
the target exists at time k−1 and continues to exist at time
k. The second of these, p(ψk|Ek,Ek−1 = ē,z1:k), called the
birth density, describes the case where the target does not
exist at time k−1, but comes into existence between times
k−1 and k.

The densities, p(ψk|Ek,Ek−1,z1:k), in (15) can be evalu-
ated using Bayes’ rule

p(ψk|Ek,Ek−1,z1:k)

=
P(zk|ψk,Ek,Ek−1,z1:k−1)p(ψk|Ek,Ek−1,z1:k−1)

P(zk|Ek,Ek−1,z1:k−1)
(16)

=
P(zk|ψk,Ek)p(ψk|Ek,Ek−1,z1:k−1)

P(zk|Ek,Ek−1,z1:k−1)
. (17)

Since the likelihood that the target is not present, P(zk|Ek =
ē), is independent of the target state, the density can be writ-
ten in terms of a likelihood ratio

p(ψk|Ek,Ek−1,z1:k)

=
L(zk|ψk,Ek)p(ψk|Ek,Ek−1,z1:k−1)

L(zk|Ek,Ek−1,z1:k−1)
(18)

∝ L(zk|ψk,Ek)p(ψk|Ek,Ek−1,z1:k−1). (19)

In the case where the target existed at time k−1, Ek−1 = e,
the predicted density can be calculated in terms of the target
dynamic model, that is

p(ψk|Ek,Ek−1 = e,z1:k−1) =∫
p(ψk|ψk−1,Ek,Ek−1 = e)×

p(ψk−1|Ek−1 = e,z1:k−1)dψk−1. (20)

If the target did not exist at time k−1 then

p(ψk|Ek,Ek−1 = ē,z1:k−1) = p(ψk|Ek,Ek−1 = ē), (21)

which represents the prior density of a target which has star-
ted to exist between times k−1 and k.

3.2 Mixing Terms

The mixing terms required by (15), can be rearranged using
Bayes’ rule

P(Ek−1|Ek,z1:k)

=
P(Ek,zk|Ek−1,z1:k−1)

P(zk,Ek|z1:k−1)
P(Ek−1|z1:k−1)

(22)

=
L(zk|Ek,Ek−1,z1:k−1)P(Ek|Ek−1)

L(zk,Ek|z1:k−1)
×P(Ek−1|z1:k−1).

(23)

The first term in the numerator of (23) is identical to the
normalising term of (18) and expands to

L(zk|Ek,Ek−1,z1:k−1)

=
∫

L(zk|ψk,Ek)p(ψk|Ek,Ek−1,z1:k−1)dψk,
(24)



while the second term represents the existence transition
relation. The third term in the numerator of (23) is the
posterior probability of existence at time k− 1. Since the
denominator of (23) is independent of Ek−1, it can be con-
sidered to be a normalising constant, which can be simply
calculated using

L(zk,Ek|z1:k−1) = ∑
Ek−1={e,ē}

L(zk|Ek,Ek−1,z1:k−1)

×P(Ek|Ek−1,z1:k−1)P(Ek−1|z1:k−1). (25)

3.3 Probability of Existence

Using Bayes’ rule, the probability of existence required by
(13) is given by

P(Ek|z1:k) =
P(zk|Ek,z1:k−1)P(Ek|z1:k−1)

P(zk|z1:k−1)
(26)

=
L(zk|Ek,z1:k−1)P(Ek|z1:k−1)

L(zk|z1:k−1)
, (27)

where, as before, L(·) refers to the likelihood ratio as given
in (12). The first term in the numerator of (27) can be ex-
panded as follows

L(zk|Ek,z1:k−1)

= ∑
Ek−1={e,ē}

L(zk,Ek−1|Ek,z1:k−1) (28)

= ∑
Ek−1={e,ē}

P(Ek−1|Ek,z1:k)L(zk|Ek,Ek−1,z1:k−1).

(29)

The mixing terms, P(Ek−1|Ek,z1:k), are exactly those re-
quired by the conditional target state in (15) and given by
(23). The likelihood in (29) was derived in the calculation
of the mixing terms and is given by (24). The second term
in the numerator of (27) is the predicted probability of ex-
istence and is given by

P(Ek|z1:k−1) = peeP(Ek−1 = e|z1:k−1)+
peē [1−P(Ek−1 = e|z1:k−1)] , (30)

where pee and peē are defined by the Markovian existence
model (Section 2.1) and P(Ek−1 = e|z1:k−1) is the posterior
probability of existence at time k−1.

The denominator of (27) can be expanded as follows

L(zk|z1:k−1) = ∑
Ek∈{e,ē}

L(zk,Ek|z1:k−1) (31)

= L(zk|Ek = e,z1:k−1)P(Ek = e|z1:k−1)+
L(zk|Ek = ē,z1:k−1)P(Ek = ē|z1:k−1).

(32)

The calculation of the first likelihood ratio has been de-
rived in (29) and by definition the second likelihood ra-
tio L(zk|Ek = ē,z1:k−1) = L(zk|Ek = ē) = 1. Obviously
the predicted probability that the target does not exist is
related to the predicted probability of target existence by

P(Ek = ē|z1:k−1) = 1−P(Ek = e|z1:k−1). Equation (32) then
simplifies as

L(zk|z1:k−1) = L(zk|Ek,z1:k−1)P(Ek|z1:k−1)+
[1−P(Ek|z1:k−1)] . (33)

Hence the probability of existence is given by

P(Ek|z1:k) =
L(zk|Ek,z1:k−1)P(Ek|z1:k−1)

L(zk|Ek,z1:k−1)P(Ek|z1:k−1)+ [1−P(Ek|z1:k−1)]
, (34)

where L(zk|Ek,z1:k−1) is calculated using (29) and
P(Ek|z1:k−1) is calculated using (30).

3.4 Summary of the Derivation

As can be seen from the derivations, each of the desired
terms can be calculated as functions of

• the prior probability of existence, P(Ek−1|z1:k−1),

• the Markov transition terms, pee and peē,

• the likelihood ratio L(zk|ψk,Ek),

• a prior state density assuming that the target existed at
time k−1, p(ψk−1|Ek−1 = e,z1:k−1),

• a transition density assuming that the target
continued to exist through times k − 1 and k,
p(ψk|ψk−1,Ek,Ek−1 = e), and

• a prior state density assuming that the target started to
exist between times k−1 and k, p(ψk|Ek,Ek−1 = ē).

All of the above are quantities that have been defined by
the process model and the measurement model presented in
previous sections.

4 Particle Filter Implementation

The basic algorithm is based upon sequential Monte-Carlo
methods (particle filtering) [9, 10], with a novel modifica-
tion to detect target existence. The algorithm incorporates
four dependent processes that estimate the target state and
the probability of target existence. The continuing and birth
densities (15) are estimated using separate particle filters.
The third process mixes the two approximate densities to-
gether to form the complete posterior state density, while a
fourth process calculates the probability of target existence.

4.1 Calculation of the Continuing Density

Following from (18), the continuing density,
p(ψk|Ek,Ek−1 = e,z1:k), is calculated using a stand-
ard SIR particle filtering algorithm (Algorithm 4 of [10]),
without a resampling step. In this algorithm resampling is
performed after the mixing stage. Assuming that the prior
density, p(ψk−1|Ek−1 = e,z1:k−1), is represented by the set
of particles i ∈ {1 . . .Nc}, with position ψ i

k−1 and weights
wi

k−1 = 1/Nc, the algorithm proceeds as



1. The system dynamics form the importance sampling
density, and so the process equation is used to propose
the particle positions at time k

ψ
(c)i
k = Fψ

i
k−1 + µ

i
k, ∀i ∈ {1 . . .Ns}, (35)

where µ i
k is a random sample drawn from the process

noise distribution.

2. The new particle weights are calculated using the
likelihood ratio (12). Thus the set of unnormalised
weights at time k become

w̃(c)i
k =

1
Nc

L(zk|ψ
(c)i
k ,Ek), (36)

for all particles i ∈ {1 . . .Nc}.

3. The weights can then be normalised

w(c)i
k =

w̃(c)i
k

∑
Ns
j=1 w̃(c) j

k

, ∀i ∈ {1 . . .Nc}. (37)

4. The set of particles ψ
(c)i
k with corresponding weights

w(c)i
k thus form an approximation to the posterior dens-

ity p(ψk|Ek,Ek−1 = e,z1:k).

Since the application of this algorithm is for low SNR tar-
gets, using the system dynamics as the importance density
is adequate. If the algorithm was applied to higher SNR
targets, then an importance density based on the data would
give better performance.

4.2 Calculation of the Birth Density

Unlike the calculation of the continuing density, the calcu-
lation of the birth density, p(ψk|Ek,Ek−1 = ē,z1:k), does not
have the systems dynamics as prior information, since the
target does not exist at time k− 1. It follows that in this
case the importance density cannot be base on the system
dynamics. From [10], the particle weights can be defined
as

w(b)i
k ∝

p(ψ(b)i
k |Ek = e,E0:k−1 = ē,z1:k)

q(ψ(b)i
k |Ek = e,E0:k−1 = ē,z1:k)

, (38)

for i ∈ {1 . . .Nb}, where q(·) is the importance density and
E0:k−1 = ē signifies that Et = ē for all t ∈ {0 . . .k−1}. The
weight calculation does not account for ψ0:k−1, since the
non-existence of the target prior to k implies that the target
state is undefined. In analogy with (19), the density in the
numerator of (38) factorises as

p(ψk|Ek = e,E0:k−1 = ē,z1:k) ∝

L(zk|ψk,Ek)p(ψk|Ek = e,Ek−1 = ē), (39)

while the importance density is chosen as

q(ψk|Ek,E0:k−1 = ē,z1:k) = q(ψk|Ek,Ek−1 = ē,zk). (40)

Thus the weight calculation becomes

w(b)i
k ∝

L(zk|ψ
(b)i
k ,Ek)p(ψ(b)i

k |Ek = e,Ek−1 = ē)

q(ψ(b)i
k |Ek,Ek−1 = ē,zk)

. (41)

Choosing an importance density equal to the prior de-
scribed in Section 2.1 would imply that the particle weights
become normalised likelihoods. However, since the import-
ance density depends on zk, the data at time k can give some
hints as to a plausible target state. In this case peaks in the
data are used to initialise the target state, under the assump-
tion that even quiet targets will instantaneously disturb the
underlying noise. Bins in the data which have an intens-
ity that exceed a certain threshold are chosen as the initial-
ising bins. Uniform samples are drawn from within the area
enclosed by each initialising bin and the target intensity is
similarly sampled from the measurement noise, with the in-
tensity of the initialising bin as the mean.

The importance density can then be written as

q(ψk|Ek,Ek−1 = ē,zk) =
1

NPV ∑
(x,y)∈NP

N (Ak;z(x,y)
k ,σ2

ω), (42)

where NP is the set of of bins in the data which have intens-
ity that exceeds the threshold, z(x,y)

k is the measured intens-
ity in bin (x,y) and V is the area of a single DFT bin. Note
that since the measurements do provide information about
ẋ and ẏ, they are sampled directly from the prior.

Hence the algorithm for computing the birth density is

1. Draw Nb samples, ψ
(b)i
k , from the importance density,

ψ
(b)i
k ∼ q(ψk|Ek,Ek−1 = ē,zk), i ∈ {1 . . .Nb}. (43)

2. The unnormalised particle weights are then calculated
using the likelihood ratio

w̃(b)i
k =

L(zk|ψ
(b)i
k ,Ek)

NbVT q(ψ(b)i
k |Ek,Ek−1 = ē,zk)

, (44)

for all particles i ∈ {1 . . .Nb}, where VT is the total
volume encapsulated by the target state prior.

3. The weights can then be normalised

w(b)i
k =

w̃(b)i
k

∑
Ns
j=1 w̃(b) j

k

, ∀i ∈ {1 . . .Nb}. (45)

4. The set of particles, ψ
(b)i
k , and their weights, w(b)i

k , then
approximate the density p(ψk|Ek,Ek−1 = ē,z1:k).

4.3 Calculation of the Mixing Parameters

In order to determine the complete posterior distribution,
the mixing parameters (23) must be calculated. For both
the continuing and birth densities, the mixing parameter re-
quires calculation of the integral∫

L(zk|ψk,Ek)p(ψk|Ek,Ek−1,z1:k−1)dψk, (46)

where Ek = e, but Ek−1 ∈ {e, ē}. Notice that from the de-
rivation of the densities in Section 3, the normalising term



in (18) is

L(zk|Ek,Ek−1,z1:k−1) =∫
L(zk|ψk,Ek)p(ψk|Ek,Ek−1,z1:k−1)dψk, (47)

which is the required quantity. This quantity is implicitly
evaluated when normalising the densities, which occurs
through normalisation of the particle weights. Hence the
integral required for the calculation of the mixing paramet-
ers is simply approximated by the sum of the unnormal-
ised weights. This is not a new observation, for example
see [11]. The unnormalised mixing term for the continuing
density is thus

M̃c = peeP(Ek−1 = e|z1:k−1)
Nc

∑
i=1

w̃(c)i
k . (48)

Similarly, the mixing term for the birth density is

M̃b = peēP(Ek−1 = ē|z1:k−1)
Nb

∑
i=1

w̃(b)i
k . (49)

These can then be normalised, giving

Mi =
M̃i

M̃c + M̃b
, i ∈ {c,b}, (50)

where the Mi denote Mc = P(Ek−1 = e|Ek,z1:k) and Mb =
P(Ek−1 = ē|Ek,z1:k).

4.4 Forming the Posterior Target State Density

The two sets of particle/weight pairs, {(ψ(c)i
k ,w(c)i

k )|i =
1 . . .Nc} and {(ψ(b)i

k ,w(b)i
k )|i = 1 . . .Nb}, representing the

continuing and birth densities, can be joined into a single set
of particles representing the complete posterior (15). This
super-set of particles can then be resampled, leaving Nc

particles describing the posterior target state density. Using
the mixing parameters calculated in the previous section,
the algorithm is straightforward

1. Multiply the weight of each particle i ∈ {1 . . .Nc} in
the continuing density by the corresponding mixing
parameter

ŵ(c)i
k = Mcw(c)i

k . (51)

2. Similarly for the birth density

ŵ(b)i
k = Mbw(b)i

k . (52)

3. Form the set of particles representing the complete
posterior from the re-weighted set of samples{

(ψ( j)i
k , ŵ( j)i

k )|i ∈ {1 . . .N j}, j ∈ {c,b}
}

(53)

4. Resample the full set of Nc + Nb particles, reducing
their number down to Nc, resulting in the particles ψ i

k,
i ∈ {1 . . .Nc} with uniform weights.

4.5 Calculating the Probability of Existence

In order to evaluate the probability of existence, the two
terms given by (29) and (30) must be calculated. As dis-
cussed in Section 4.3, the likelihood required by (29) is
given by the sum of unnormalised particle weights and the
mixing parameters are the same as those required for the
state densities. Hence

L(zk|Ek,z1:k−1)≈ Mc

Nc

∑
i=1

w̃(c)i
k +Mb

Nb

∑
i=1

w̃(b)i
k . (54)

The predicted probability of existence is straightforward to
calculate from (30). Writing PE

k = P(Ek|z1:k),

P(Ek|z1:k−1) = peePE
k−1 + peē[1−PE

k−1]. (55)

Using (54) and (55) the probability of existence, PE
k , can

then be calculated by substitution into (34).

5 Simulation and Results

This section aims to show the efficacy of the track-before-
detect algorithm in detecting and tracking a single target
through simulated data.

The simulation generates random synthetic target traject-
ories according to the dynamics given in (1). The process
noise covariance matrix used for the target process, Q, is

Q =

 1
2 Qs 02×2 02×1

02×2
1
2 Qs 02×1

02×1 02×1
1
10 T

 , (56)

where the sub-matrix Qs is given by

Qs =
[

T 3/3 T 2/2
T 2/2 T

]
, (57)

0a×b is a a× b matrix of zeros and T = 1 is the period of
time between measurements. The birth probability, peē, and
death probability, pēe are both set at 0.1.

The 20×20 grid of data given to the tracker is a subset of
the full 128× 128 measurement data set. Setting the noise
variance, σ2

ω , at unity allows the amplitude of the complex
sinusoids (4) to control the signal-to-noise ratio. Hanning
DFT windows are used in both the x and y directions, al-
though this is not a limitation of the algorithm. As long as
the windowing function used to simulate the data matches
(or is closely approximated by) that used to generate each
particle’s expected signal, any function (including the flat-
top window) could be used.

In each simulation the target state is initialised at

ψ0 =
[
8 0.2 8 0.2 10AdB/20

]T
, (58)

where AdB is the simulated signal amplitude in decibels.
The target position is assumed to remain within the meas-
ured region, the velocity in each dimension is assumed
to be constrained to |ẋk|, |ẏk| < 1 and the signal intensity
constrained to 0 < Ak < 10. 2000 particles were used for
both the birth and continuing densities, for a total of 4000
particles.
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Fig. 2: Simulated data with signals of different strengths.
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Fig. 3: Average probability of existence.

Simulated data containing a target at several different sig-
nal strengths are compared in Figure 2. This figure shows
a slice through each set of data along the x axis at y = 8
(c.f. Figure 1), showing the intensities, in dB, in each bin.
For the purposes of comparison, this figure shows each tar-
get signal simulated in the same set of noise. The figure
shows that, for this snapshot of noise and target intensit-
ies, the 12 dB SNR target is relatively easy to pick out from
the noise, whereas the 3 dB SNR target is much more diffi-
cult to discern. This illustrates the difficulty that a standard
detection scheme would have in detecting these low SNR
targets.

Figure 3 shows the probability of existence calculate by
the TBD algorithm, averaged over ten simulations, for SNR
set at 12 dB, 6 dB, 3 dB and for noise only. The noise only
example is included to show the resulting probability of ex-
istence when there is no target present. In these examples
the target appears after 7 seconds and then dies at the 25
second mark. The target is assumed to be present if the
probability of existence is greater than 0.5, which is plotted
as a horizontal line in Figure 3.

It can be seen from Figure 3 that, on average, the al-
gorithm performs very well at 12 dB SNR, with no track
initiation delay and no track termination delay. For a 6 dB

SNR target, the detection confidence is also quite high, but
there is an average delay of one second on both track initi-
ation and track termination. The detection of the target at
3 dB SNR is much less confident, but passes the threshold
with approximately 4 seconds track initiation delay and 1
second track termination delay. The asymptotic value of
PE , which can be seen prominently in the noise only curve,
is related to the probabilities of target birth and death in the
existence transition matrix.

6 Conclusions and Further Work
This paper has developed a novel track-before-detect al-
gorithm based on the implementation of an efficient particle
filter. The data expected by the filter is closely related
to that which would be produced by operational sensors.
Results produced from the algorithm using a total of 4000
particles have shown that this technique can reliably detect
and track targets with a per-bin signal-to-noise ratio of 6dB.
Targets with a 3dB SNR can be detected and tracked, al-
though with a much lower confidence.

There are several continuing areas of research for im-
proving the algorithm developed in this paper. There is no
need to have the same number of particles in the birth and
continuing densities. In the interests of improving the al-
gorithm efficiency, the effect of changing the ratio of the
number of particles used to estimate each density could
be explored. The extension of the current single target al-
gorithm to multi-target situations is an on-going area of re-
search.
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