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Abstract – This paper focuses on a novel region-based image
fusion method which facilitates increased flexibility with the def-
inition of a variety of fusion rules. A dual-tree complex wavelet
transform (DT-CWT) is used to segment the features of the in-
put images, either jointly or separately, to produce a region map.
Characteristics of each region are calculated and a region-based
approach is used to fuse the images, region-by-region, in the
wavelet domain. This method gives results comparable to pixel-
based fusion methods, but despite an increase in complexity, has a
number of advantages over such methods. These include: the abil-
ity to use more intelligent semantic fusion rules; and for regions
with certain properties to be attenuated or accentuated.

Keywords: Image Fusion, Feature-Based Fusion, Region-Based
Fusion, Segmentation.

1 Introduction

Image and video fusion is a specialisation of the more gen-
eral topic of data fusion, dealing with image and video
data [1]. There are a number of potential advantages of in-
tegrating the data from multiple sensors. These include [2]:

• Redundant information provided by a group of sensors
can reduce overall uncertainty and increase accuracy
of the integrated image;

• Complementary information from different sensors al-
lows features in a scene to be perceived that would not
be possible from individual sensors;

• More timely information is available as a group of sen-
sors can collect information of a scene more quickly
than a single sensor.

Image fusion is defined in [3] as the process by which
several images, or some of their features are combined to-
gether to form a single image. The fusion process must
satisfy the following requirements as described in [4]:

• Preserve all relevant information in the fused image;

• Suppress irrelevant parts of the image and noise;

• Minimise any artifacts or inconsistencies in the fused
image.

Image fusion can be performed at four main levels [2].
These, sorted in ascending order of abstraction, are: sig-
nal; pixel; feature; and symbolic level. At pixel-level, im-
ages are combined by considering individual pixel values or
small arbitrary regions of pixels in order to make the fusion
decision. Pixel-based fusion is briefly discussed in Sec. 2,
particularly focusing on fusion using complex wavelets.

One method of achieving feature-level fusion is with a
region-based fusion scheme. An image is initially seg-
mented in some way to produce a set of regions. Various
properties of these regions can be calculated and used to
determine which features from which images are included
in the fused image. This has advantages over pixel-based
methods as more intelligent semantic fusion rules can be
considered based on actual features in the image, rather
than on single or arbitrary groups of pixels. Sec. 3 gives
an overview of our region fusion scheme.

The remainder of the paper is organised with results and
discussion in Sec. 4 and the conclusion in Sec. 5. Through-
out the paper, it is assumed that all input images are regis-
tered.

2 Review of Pixel Level Fusion

A number of pixel level fusion schemes exist. These range
from simple averaging of the pixel values of registered im-
ages to more complex multi-resolution (MR) pyramid and
wavelet methods (for example see [3, 3–12]). Transform
fusion methods, defined in Eq. (1), generally involve trans-
forming each of the registered input imagesI1, I2, . . . , IN

from normal image space into some other domain by apply-
ing an MR transform,ω. The transformed images are fused
using some fusion rule,φ, and the fused image,F , recon-
structed by performing the inverse transform,ω−1 [3].

F = ω−1(φ(ω(I1), ω(I2), . . . , ω(IN ))) (1)

2.1 The Wavelet Transform

Wavelet transforms have been successfully used in many
fusion schemes. A common wavelet analysis technique
used for fusion is the discrete wavelet transform (DWT)
[3, 7, 11, 13]. It has been found to have some advan-
tages over pyramid schemes such as: increased direc-
tional information [7]; no blocking artifacts that often occur



in pyramid-fused images [7]; better signal-to-noise ratios
than pyramid-based fusion [14]; improved perception over
pyramid-based fused images, compared using human anal-
ysis [7,14].

A major problem with the DWT is its shift variant na-
ture caused by sub-sampling which occurs at each level. A
small shift in the input signal results in a completely dif-
ferent distribution of energy between DWT coefficients at
different scales [9]. A shift invariant DWT (SIDWT), de-
scribed in [4], yields a very over-complete signal represen-
tation as there is no sub-sampling.

The Dual Tree Complex Wavelet Transform (DT-CWT)
[9, 15, 16] is an over complete wavelet that provides both
good shift invariance and directional selectivity over the
DWT, although there is an increased memory and compu-
tational cost. Two fully decimated trees are produced, one
for the odd samples and one for the even samples gener-
ated at the first level. The DT-CWT has reduced over com-
pleteness compared with the SIDWT, an increased direc-
tional sensitivity over the DWT and is able to distinguish
between positive and negative orientations giving six dis-
tinct sub-bands at each level, the orientations of which are
±15◦,±45◦,±75◦. The DT-CWT gives perfect reconstruc-
tion as the filters are chosen from a perfect reconstruction
bi-orthogonal set [9]. It is applied to images by separa-
ble complex filtering in two dimensions. The bi-orthogonal
Antonini and Q-shift filters used are described in [15]. The
increased shift invariance and directional sensitivity mean
that the DT-CWT gives improved fusion results over the
DWT [10].

2.2 Pixel Fusion with Complex Wavelets

The pixel-level fusion scheme used here, employs the DT-
CWT to obtain a MR decomposition of the input im-
ages. The wavelet coefficients are then combined, using
a maximum-selectionfusion rule to produce a single set of
coefficients corresponding to the fused image. This process
is shown in Fig. 1.

The maximum-selection scheme selects the largest ab-
solute wavelet coefficient at each location from the input
images as the coefficient at that location in the fused im-
age. As wavelets tend to pick out the salient features of
an image, this scheme works well producing good results.
More complex fusion rules have been developed such as
[7], where the maximum absolute value in an arbitrary win-
dow is used as an activity measure of the central coefficient
in the window. In [6] a decision map is created based on the
activity of an arbitrary block around a central coefficient as
well as the similarity between the two areas of an image.

3 The Region Level Fusion Scheme
The majority of applications of a fusion scheme are inter-
ested in features within the image, not in the actual pixels.
Therefore, it seems reasonable to incorporate feature infor-
mation into the fusion process [17]. There are a number of
perceived advantages of this, including:

• Intelligent fusion rules: Fusion rules are based on
combining groups of pixels which form the regions of
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Fig. 1: The Pixel-Based Image Fusion Scheme Using the
DT-CWT

an image. Thus, more useful tests for choosing the re-
gions of a fused image, based on various properties of
a region, can be implemented;

• Highlight features: Regions with certain properties
can be either accentuated or attenuated in the fused
image depending on a variety of the region’s charac-
teristics;

• Reduced Sensitivity to Noise: Processing semantic
regions rather than at individual pixels or arbitrary re-
gions can help overcome some of the problems with
pixel-fusion methods such as sensitivity to noise, blur-
ring effects and mis-registration [17];

• Registration and Video Fusion: The feature infor-
mation extracted from the input images, could be used
to aid the registration of the images. Region-video fu-
sion schemes could use motion estimation to track the
fused features, allowing the majority of frames to be
quickly predicted from some fully fused frames.

A number of region-based fusion schemes have been pro-
posed, for example, [6, 17–20]. These initially transform
pre-registered images using an MR transform. Regions rep-
resenting image features are then extracted from the trans-
form coefficients. A grey-level clustering using a gener-
alised pyramid linking method is used for segmentation
in [6,17,20]. The regions are then fused based on a simple
region property such as average activity. These methods do
not take full advantage of the wealth of information that can
be calculated for each region.

The novel region-based fusion scheme proposed in this
paper is shown in Fig. 2. Initially, theN registered images
I1, I2, . . . , IN are transformed usingω, the DT-CWT.

[Dn, An] = ω(In) (2)

This gives a set of detail coefficientsDn,(θ,l) for each im-
age In, consisting of a group of six different subbands,
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Fig. 2: The Region-Based Image Fusion Scheme Using the
DT-CWT

θ, at each level of decomposition,l. An is the approx-
imation of the image at the highest level. A combina-
tion of intensity information,In and textural information,
Dn, is used to segment the images, either jointly or sepa-
rately, with the segmentation algorithmφ, giving the seg-
mentation maps:S1, S2, . . . , SN ; or a list of all theTn

regions for each image:R1, R2, . . . , RN ; where Rn =
{rn,1, rn,2, . . . , rn,Tn}, n ∈ N . The map is down sampled
by 2 to give a decimated segmentation map of the image at
each level of the transform. When down sampling, prior-
ity is always given to a pixel from the smaller of the two
regions. The segmentation algorithm is discussed in Sec.
3.1

A MR priority map,

Pn = {pn,rn,1 , pn,rn,2 , . . . , pn,rn,Tn
} (3)

is then generated for each region,rn,t in each image,n
based on any of a variety of tests. Calculating the prior-
ity is discussed further in Sec. 3.2. The priority generated
for the input images shown in Figs. 5(a) and 5(b) are shown
in Fig. 3. The priority of each region across all subbands
and levels is the same. If priority is allowed to vary across
subbands and levels, the features become blurred when the
feature has a low energy in some of the subbands. This re-
sults in some coefficients which contribute to a feature in
the original input image not being present in the fused im-
age coefficients, causing distortion.

A feature,tn, can be accentuated or attenuated by mul-
tiplying all of the wavelet coefficients corresponding to the
region by a constant,wtn . A weighting mask, Wn, is cre-
ated for each image, the same size as the wavelet coeffi-
cients, defining how much each coefficient should be mul-

(a) For The IR Image (b) For The Visible Image

Fig. 3: Priorities Generated Using Entropy

tiplied by.
Regions are then either chosen or discarded based on this

priority and the fusion rule,φ, giving the wavelet coeffi-
cients of the fused image. A mask,M , is generated that
specifies which image each region should come from. This
is shown in Eq. (4). The mask is the same size as that of
the wavelet coefficients of the fused image. An example of
the mask for one subband at the second level is shown in
Fig. 4. The algorithm always chooses the region with the
maximum priority to determine which image each of the
coefficients representing a region,t, should come from.

Mt = φ(p1,t, p2,t, . . . , pN,t) (4)

If Si 6= Sj , a segmentation map,SF , is created such that
SF = S1 ∪ S2 ∪ . . . ∪ SN . Thus, where two regionsri,p

andrj,q from imagei andj overlap, both will be split into
two regions, each with the same priority as the original.

Fig. 4: The Image Mask: Black from IR, Gray from Visible

The fusion image is obtained by performing the inverse
transform,ω−1, on the fused weighted wavelet coefficients,
F = ω−1(DF , AF ).

3.1 The Segmentation Algorithm

The quality of the segmentation algorithm is of vital impor-
tance to the fusion process. For the correct features to be
present in the fused image, ideally, the segmentation algo-
rithm should have the following properties:

• All required features are segmented as single separate
regions. If a feature is missed, it may not be included
in the fused image. If a feature is split into more than
one region, each will be treated separately, possibly
introducing artifacts into the fused image;



• As small a number of regions as possible should be
created, as the time taken to compute the fused image
increases with the number of regions.

An adapted version of the combined morphological-
spectral unsupervised image segmentation algorithm is
used, which is described in [21], enabling it to handle multi-
modal images. The algorithm works in two stages. The first
stage deals with both textured and non-textured regions in a
meaningful fashion. The detail coefficients of the DT-CWT
were used to process texture. The watershed transform of a
combination of the perceptual gradient of the texture infor-
mation and of the intensity information provides an initial
segmentation. The second stage groups together primitive
regions using a spectral clustering technique. A segmented
IR and visible image is shown in Fig. 5.

The method can use either intensity information or textu-
ral information or both in order to obtain the segmentation
map. This flexibility is useful for multi-modal fusion where
somea-priori information of the sensor types is known. For
example, IR images tend to lack textural information with
most features having a similar intensity value throughout
the region. Intuitively, an intensity only segmentation map
should give better results than a texture-based segmenta-
tion.

Secondly, the segmentation can be performed either sep-
arately or jointly. For separate segmentation, each of the
input images generates an independent segmentation map
for each image.

S1 = σ(I1, D1), . . . , SN = σ(IN , DN ) (5)

Alternatively, information from all images could be used to
produce a joint segmentation map.

Sjoint = σ(I1 . . . IN , D1 . . . DN ) (6)

A multiscale watershed segmentation algorithm is used to
jointly segment multivalued images in [22]. In general,
jointly segmented images work better for fusion. This is be-
cause the segmentation map will contain a minimum num-
ber of regions to represent all the features in the scene most
efficiently. A problem can occur for separately segmented
images, where different images have different features or
features which appear as slightly different sizes in different
modalities. Where regions partially overlap, if the over-
lapped region is incorrectly dealt with, artifacts will be in-
troduced and the extra regions created to deal with the over-
lap will increase the time taken to fuse the images. How-
ever, if the information from the segmentation process is
going to be used to register the images or if input images
are completely different, it can be useful to separately seg-
ment the images. The effects of segmenting the images in
different ways are shown in Fig. 5. In particular, the inef-
ficient segmentation union of the two unimodal segmenta-
tion maps, which is necessary in order to fuse the images is
show in 5(f).

3.2 Calculation of Priority and Fusion Rules

A measure of the average energy of the wavelet coefficients
in a region is generally a good measure of the importance

of a regions. In [6], a simple activity measure taking the
absolute value of the wavelet coefficient is used. Thus, the
priority of regionrtn in imagen, with size|rtn | calculated
with the detail coefficientsdn(θ,l)(x, y) ∈ Dn(θ,l):

P (rtn) =
1
|rtn

|
∑

∀θ,∀l,(x,y)∈rtn

∣∣dn(θ,l)(x, y)
∣∣ (7)

Alternatively, the variance of the wavelet coefficients
over a region could be used as priority

P (rtn
) =

1
|rtn

|
∑

∀θ,∀l,(x,y)∈rtn

(dn(θ,l)(x, y)− d̄n(θ,l))2

(8)
where,d̄n(θ,l) is the average wavelet coefficient of the re-
gion rtn

.
Thirdly, the entropy of the wavelet coefficients could be

calculated and used as priority. The normalized Shannon
entropy of a region is:

P (rtn
) =

1
|rtn |

∑

∀θ,∀l,(x,y)∈rtn

d2
n(θ,l)(x, y) log d2

n(θ,l)(x, y)

(9)
with the convention0 log(0) = 0

A variety of other methods could be used, possibly in
combination with one or more of the above, to produce a
priority map. The region’s size, shape or position of the
center of mass could also be used to contribute to the prior-
ity. For example, smaller regions could be given higher pri-
orities than larger regions which are more likely to contain
background information. Fig. 6 shows a Delaunay triangu-
lation map. This shows how each of the regions are related
to other surrounding regions in the image. This information
could be used to generate priorities based on the position of
two regions relative to each other. For example, in Fig. 6,
the priority of the figure could be increased the closer the
figure is to the house or road.

Fig. 6: The Fused Image with Segmentation Map and Tri-
angulation Map Overlaid

Alternatively, this region information could be used to
weight a region, increasing or decreasing its prominence in
the image. A weighting system implemented to increase
the weighting of a region dependent on its proximity to an-
other region is described in Eq. (10). The weighting,wi,



of a region,ri of an image, with centre of mass at coordi-
nates(xi, yi), is inversely proportional to the distance from
a regionrj . The regions need not be from the same im-
age. While the classification of regions as objects is beyond
the scope of this research, a simple threshold can often be
used to extract features such as people, animals and vehi-
cles from infra-red images, for example, the figure from the
IR image, Fig 5(a).

wi ∝ 1√
(xi − xj)2 + (yi − yj)2

(10)

4 Results

Fig. 7 shows the fused result of the IR and visible images
for both pixel and region-based methods. As can be ob-
served, the region level scheme performs comparably with
the pixel based fusion method. The input images have been
jointly segmented and priority based on either entropy, vari-
ance or activity. Each of these methods have successfully
chosen the majority of the background of the fused image
from the visible image, while the important features in the
IR image, namely the figure, have also been included. With
these images, there appears to be very little differentiating
the three methods of calculating priority.

Fig. 7(e) shows the weighting mask generated by extract-
ing all regions in the IR image above a certain threshold.
This can be seen to successfully extract the feature repre-
senting the figure. The coefficients representing the figure
are weighted by a factor 2.0, which accentuates the pres-
ence of the figure, as shown in Fig. 7(f).

Fig. 8 shows two multi-focus images. The clock images
are jointly segmented and the priorities calculated using en-
tropy are shown in the figure. The in focus parts of the im-
age have higher priorities than the out of focus images, thus,
the fused image shows both clocks in focus. The region-
fused image is perceived slightly better than the pixel-fused
image. The out of focus image is slightly larger than the in
focus image. The pixel-fusion algorithm picks these out of
focus pixels over some parts of the background, introducing
artifacts.

Fig. 9 shows three input images depicting some people
by the sea, with a ship and buoy at sea. The joint segmenta-
tion map shown in this figure accurately segments the peo-
ple on the beach as well as the boat and buoy. The pixel-
fused image has some errors due to mis-registration of the
input images, which are not visible in the region-fused im-
age. However, some detail around the boat is missing in the
region-fused image.

Fig. 10 shows images from a sequence of fused IR and
visible images. The distance between the centre of masses
of the region representing the road and the figure is cal-
culated and the coefficients of the figure are weighted in-
versely proportional to the closeness to the road. For this
experiment the road was manually selected and the figure
detected by thresholding the IR image. The calculated dis-
tance (given in pixels) and the weighting applied to the fig-
ure is given for each image. These images are jointly seg-
mented and fused using an entropy priority. The figure is
seen to get brighter as he moves closer to the road. This

(a) Input Image A (b) Input Image B

(c) Entropy Priority Map for Clock A
for the Jointly Segmented Input Im-
ages

(d) Entropy Priority Map for Clock B
for the Jointly Segmented Input Im-
ages

(e) Pixel-Based Fused Image (f) Region-Based Fused Image

Fig. 8: Fusion of Multifocus Clocks Image

task differs from that originally proposed in [23] for this
image sequence, which was to determine the figure’s posi-
tion relative to the fence. However, this is a very difficult
task and the task proposed is a worthwhile exercise showing
how this algorithm could be applied.

These results were obtained with a Matlab implementa-
tion of the algorithm as part of an image fusion toolbox.

5 Conclusions

This paper has demonstrated that comparable results can
be achieved with region and pixel-based methods. While
region-based fusion methods are generally more complex,
there are a number of advantages of such schemes over
pixel-based fusion. The advantages demonstrated here in-
clude novel more intelligent fusion rules and the ability to
treat regions differently depending on a variety of proper-
ties such as average activity, size and position relative to
other regions in the scene. Future work should include a
thorough objective and subjective testing of the effects of
using either joint or separate multi-modal image segmenta-
tion and the effects of using only intensity or textural infor-
mation or both on image fusion.
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(a) Original IR Image (b) Original Visible Image (c) Joint Segmentation

(d) Unimodal Segmentation of IR Image (e) Unimodal Segmentation of Visible Image (f) Union of Both Unimodal Segmentations

Fig. 5: Segmentation of IR and Visible Image

(a) Fused Image Using Pixel-Based Method (b) Region-Based Fused Image Using Entropy to Calcu-
late Priority

(c) Region-Based Fused Image Using Variance to Cal-
culate Priority

(d) Region-Based Fused Image Using Activity to Calcu-
late Priority

(e) Mask Used as Multiplier on IR Coefficients (f) Region-Fused Image with Masked IR Coefficients
Multiplied by a Factor of 2.0

Fig. 7: Fusion of IR and Visible Image



(a) 2-3µm Frequency Band IR Input Image (b) 8-12µm Frequency Band IR Input Image (c) Visible Range CCD Image

(d) Segmentation Map Generated by Jointly Segmenting
All Input Images

(e) Pixel-Based Fused Image (f) Region-Based Fused Image

Fig. 9: Fusion of Two IR Images and a CCD Image

(a) Image No. 11. Dist = 220; Weighting = 1.10 (b) Image No. 13. Dist = 213; Weighting = 1.13 (c) Image No. 18. Dist = 207; Weighting = 1.16

(d) Image No. 19. Dist = 111; Weighting = 1.65 (e) Image No. 24. Dist = 105; Weighting = 1.67 (f) Image No. 26. Dist = 101; Weighting = 1.69

Fig. 10: Figure in IR Image Highlighted Depending on Closeness to the Road


