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Abstract – We are interested in understanding the relationship
between Bayesian inference and evidence theory, in particular im-
precise and paradoxical reasoning. The concept of a set of proba-
bility distributions is central both in robust Bayesian analysis and
in some versions of Dempster-Shafer theory. Most of the literature
regards these two theories as incomparable. We interpret impre-
cise probabilities as imprecise posteriors obtainable from impre-
cise likelihoods and priors, both of which can be considered as ev-
idence and represented with, e.g., DS-structures. The natural and
simple robust combination operator makes all pairwise combina-
tions of elements from the two sets. The DS-structures can rep-
resent one particular family of imprecise distributions, Choquet
capacities. These are not closed under our combination rule, but
can be made so by rounding. The proposed combination operator
is unique, and has interesting normative and factual properties.
We compare its behavior on Zadeh’s example with other proposed
fusion rules. We also show how the paradoxical reasoning method
appears in the robust framework.

Keywords: DS-structures, Modified Dempster-Shafer rule, Ca-
pacities, Evidence theory, Likelihood, imprecise probability

1 Introduction
Several apparently incomparable approaches exist for un-
certainty management. It has been a goal in research to
encompass all aspects of uncertainty management in a sin-
gle framework. Attaining this goal should make the topic
teachable in undergraduate and graduate engineering cur-
ricula and facilitate engineering applications development.
We approach the problem by asking if robust Bayesian anal-
ysis could be such a framework. The DS theory originated
within Bayesian statistical analysis[1], but when developed
by Shafer[2] took the concept of belief assignment as prim-
itive. The assumption being that bodies of evidence - prob-
abilistic statements about the possible worlds of interest -
can be taken as primitives rather than sampling functions
and priors. When the connection to Bayes method and
Dempster’s application is broken, it is no longer necessary
to use the Dempster combination rule, and evidence theory
abounds with proposals on how bodies of evidence should
be interpreted and combined. But there seems not to ex-
ist other bases for obtaining bodies of evidence than likeli-
hoods and priors, and therefore an analysis of a hypothet-
ical Bayesian obtainment of bodies of evidence can bring
light to problems in evidence and aggregation theory. Par-
ticularly, a body of evidence represented by a DS-structure

(bpa) has an interpretation as a set of possible probability
distributions, and combining or aggregating two such struc-
tures can be done in robust Bayesian analysis. The result-
ing combination operator is trivial, but compared to other
similar operators it has interesting behavior and normative
advantages. It appears to be missing in recent overviews
of evidence and imprecise probability theory. Our ideas
are closely related to problems discussed in [3] and in
the recent and voluminous report[4], which also contains
a quite comprehensive bibliography. In section 2 we re-
view Bayesian and robust Bayesian analysis and some of
its relations to DS theory; in section 3 we discuss Zadeh’s
example. In section 4 we derive the robust combination op-
erator and we apply it in section 5 to Zadeh’s problem and
in section 6 to the paradoxical fusion principle.

2 Bayesian analysis

Bayesian analysis is usually explained[5, 6, 7] using the for-
mula

f(λ|x) ∝ f(x|λ)f(λ), (1)

whereλ ∈ Λ is the world of interest amongn = |Λ|
possible worlds (sometimes called parameter space), and
x ∈ X is an observation among possible observations. The
distinction between observation and world space is not nec-
essary but is convenient - it indicates what our inputs are
(observations) and what our outputs are (belief about pos-
sible worlds). The functions in the formula are probabil-
ity distributions, discrete or continuous. The sign∝ indi-
cates that the left side is proportional to the right side (as
a function ofλ), with the normalization constant left out.
In equation (1),f(x|λ) is a sampling function which con-
nects observation space and possible world space by giving
a probability distribution of observed value for each possi-
ble world, andf(λ) is a prior describing our expectation on
what the world might be. The rule (1) gives the distribution
f(λ|x) over possible worldsλ conditional on observations
x. A paradox arises if the supports off(λ) and f(x|λ)
are disjoint(since each possible world is ruled out either
by the prior or by the likelihood), a possibility we will ig-
nore throughout this paper. Equation (1) is free of technical
complication and easily explainable. It generalizes how-
ever to surprisingly complex settings, as required of any



device helpful in design of complex technical systems. Ed
Jaynes made (1) the basis for teaching science and inter-
pretation of measurements[5], an idea that caught on well
by students devouring his unfinished lecture notes on the
web. In general, for infinite (compact metric) observation
spaces or possible world sets, some measure-theoretic cau-
tion is called for, but it is also possible to base the analysis
on well-defined limit processes in each case as pointed out
by, among others, Jaynes[5]. We will here assume Jaynes’
approach and discuss thus only the finite case. Equation
(1) is valid under the assumption that observations are se-
lected and missing ’at random’, i.e., not dependent on world
state except through recorded observations. We will as-
sume this throughout. When selection is made based on un-
recorded circumstances, we haveselection biaswhich can
and should be entered into the statistical model. Ways of
handling data selection biases are discussed thoroughly in
[7]. In sensor management, selection bias occurs when the
’reason’ for directing sensors or excluding observations is
not recorded in the probabilistic model – it is however nor-
mally assumed that this problem does not exist, and maybe
it doesn’t for the more rational methods of sensor manage-
ment.

It has been an important philosophical question to char-
acterize the scope of applicability of (1), which lead to
the distinction between objective and subjective probabil-
ity, among other things. Several books and papers, among
others [8, 9, 10, 11], claim that, under reasonable assump-
tions, (1) is the only consistent basis for uncertainty man-
agement. However, the minimal assumptions truly required
to obtain this result turn out on closer inspection to be rather
complex, for a condensed overview see[12]. One simple as-
sumption usually made in those studies is that uncertainty is
measured by a real number or on an ordered scale. Many es-
tablished uncertainty management methods however mea-
sure uncertainty on a partially ordered scale and do appar-
ently not use (1) and the accompanying philosophy. Among
probability based alternatives to Bayesian analysis with par-
tially ordered uncertainty concepts are imprecise probabil-
ities or lower/upper prevision theory[13], the Dempster-
Shafer(DS)[2], the Fixsen/Mahler(MDS)[14] and Dezert-
Smarandache(DSmT)[15] theories. In these schools, it is
considered important to develop the theory without refer-
ence to classical Bayesian thinking. In particular, the as-
sumption of precise prior and sampling distributions is con-
sidered indefensible. Those assumptions are referred to as
the dogma of precision in Bayesian analysis[16].

In robust Bayesian analysis[17], one acknowledges that
there can be ambiguity about the prior and sampling dis-
tributions, and it is accepted that a convex set of such
distributions is used in inference. It is possible that all
consistent interval-based uncertainty management schemes
(where uncertainty is described by an interval of real num-
bers) can be explained as robust Bayesian analysis, but as
of now there appears to be no truly convincing argument for
this. The idea of robust Bayesian analysis goes back to the
pioneers of Bayesian analysis[8, 18], but the computational
and conceptual complexities involved meant that it could
not be fully developed in those days. Instead, a lot of effort

went into the idea of finding a canonical and unique prior,
an idea that seems to have failed except for finite problems
with some kind of symmetry, where a natural generalization
of Bernoulli’s indifference principle has become accepted.
The problem is that no proposed priors are invariant under
arbitrary rescaling of numerical quantities or non-uniform
coarsening or refinement of the current frame of discern-
ment.

Convex sets of probability distributions can be arbitrarily
complex. Such a set can be generated by mixing of a set
of ’corners’ (called simplices in linear programming the-
ory) and the set of corners can be arbitrarily large already
for sets of probability distributions over three elements (the
family is representable by the set of convex regions in the
lower left half of the unit square). In evidence theory, the
concept of DS-structure is a representation of a belief over a
frame of discernment (possible worlds) by a probability dis-
tribution over its powerset, a basic probability assignment
bpa, bba or DS-structure (terminology is not stable). Even
if it is considered important in many versions of DS theory
not to equate a DS-structure with a set of possible distri-
butions, such a perspective is prevalent in tutorials and al-
most unavoidable in a teaching situation. The DS-structure
thus represents all distributions over the set obtainable by
reallocation the probability of each non-singleton setA to
the singleton members ofA. Such a set of distributions
is a type ofChoquet capacity, and these capacities form a
particularly concise and flexible family of sets of distribu-

tions. These sets will be spanned by at most
∏n

k=1 k(n
k)

distributions. They can be represented byn − 1 real num-
bers - the corresponding DS-structure (whereas an arbitrary
convex set can need any number of distributions to span it
and needs an arbitrary number of reals to represent it - thus
Choquet capacities form a proper and really small subset
of all convex sets of distributions). It is definitely possible
to introduce more complex but still consistent uncertainty
management by going beyond robust Bayesianism, grading
the families of distributions and introducing rules on how
the grade of combined distributions are obtained from the
grades of their constituents. The grade would in some sense
indicate how plausible a distribution in the set is. But if the
grade is interpreted as a probability distribution over proba-
bility distributions, no expressive power is gained. This re-
sults in hierarchical Bayesian analysis[7]. Nevertheless, in-
stead of using possibly unnecessarily complex uncertainty
methodology, it appears more promising to put efforts into
understanding complexly structured observation and possi-
ble world spaces, as brought home convincingly in, e.g.,
[19], where – among other things –the notoriously diffi-
cult multiple tracking problem was captured as an inference
problem using a dynamic version of (1) with rather com-
plex observation and possible world spaces. A similar de-
velopment has taken place in genetics, where an unknown
number of significant genetic loci are assumed involved as
causes of a phenotype like a hereditary disease – and infer-
ence aims at finding the number of loci. Finally, in multi-
agent systems we must consider the possibility of a gaming
component, where an agent must be aware of the possible
reasoning processes of other agents, and use information



about their actions and goals to decide its own actions. In
this case there appears to be no simple way to separate – as
there is in a single agent setting – the uncertainty domain
(what is happening?) from the decision domain (what shall
I do?) because these get entangled by the uncertainties of
what other agents will believe, desire and do. This problem
can be approached by game-theoretic analyses[20].

A Bayesian data fusion system or subsystem can thus use
any level in a ladder with increasing complexity, where each
level could be augmented by a gaming component:

• Logic - no quantified uncertainty

• Precise Bayesian fusion

• Robust Bayesianism with Choquet capacities

• General robust Bayesianism (or lower/upper previ-
sions)

• Robust Bayesianism with graded sets of distributions

The ultimate use of data fusion is usually decision mak-
ing. Precise Bayesianism results in quantities that can be
used immediately for expected utility decision making[21].
For the more complex uncertainty representations one uses
either minimax criteria or estimates a precise probabil-
ity distribution to decide from. The latter is a core idea
in the transferable belief model, with so-called pignistic
transforms[22]. In robust Bayesian analysis, the maximum
entropy distribution in a set is often used as an estimate[5].
This choice can be given a decision-theoretic motivation
since it minimizes a game-theoretic loss function, and can
also be generalized to a range of loss functions[23].

Whether or not this simplistic view (ladder of
Bayesianisms) on uncertainty management is tenable in the
long run in an educational or philosophical sense is cur-
rently not settled.

3 Zadeh’s example
We will discuss our problem in the context of Zadeh’s ex-
ample, described and discussed, for example, in[15], of two
physicians who investigated a patient independently. The
two physicians agree that the problem (the diagnosis of the
patient) is within the set{M, C, T}, whereM is Menin-
gitis, C is Concussion andT is brain Tumor. However,
they express their beliefs differently, as a probability dis-
tribution which is(0.99, 0, 0.01) for the first physician and
(0, 0.99, 0.01) for the second. The question is what a third
party can say about the patients condition with no more in-
formation than that given. This example has been discussed
a lot in the literature, see e.g. [15]. It is a classical example
on how two independent sets of observations can together
eliminate cases to end up with a case not really indicated
by any of the two sets in separation. Several such exam-
ples have been brought up as good and prototypical in the
Bayesian literature, e.g., in [5]. However, in the evidence
theory literature the Bayesian solution (also obtained from
using Dempster’s rule) has been considered inadequate and
this particular example has been the starting point for sev-
eral proposals of alternative fusion rules.

The following are reactions I have met from profession-
als – physicians, psychiatrists, teachers and military com-
manders – confronted with similar problems. They are also
prototypical for current discussions on evidence theory.

• One of the experts probably made a serious mistake.

• These young men seem not to know what probability
zero means, and should be sent back to school.

• It is completely plausible that one eliminatedM and
the otherC in a sound way. SoT is the main alter-
native, or ratherT or something else, since there are
most likely more possibilities left.

• The assessment forT is probably based mostly on
prior information (rareness), so the combined judg-
ment should not makeT less likely, rather the oppo-
site.

• An investigation is always guided by the patients sub-
jective beliefs, and an investigation affects those be-
liefs. This is a possible explanation for the Ulysses
syndrome, where persons are seen to embark on end-
less journeys through the health care system. This
view would call for a game-theoretic approach (with
parameters difficult to assess).

What the example reactions learn us is that subjects con-
fronted with paradoxical information typically start build-
ing their own mental models about the case and insist on
bringing in more information, in the form of information
about the problem area, the observation protocols underly-
ing the assessments, or a new investigation. The profession-
als handling of the information problem is usually rational
enough, but very different conclusions arise from small dif-
ferences in mental models.

Similar reactions were observed already by C.S. Pierce
in his studies of the human inference process and its rela-
tion to logic and emotions[24]. Entertaining essays on this
theme can be found in[25, 26]. The person who gets the
fusion problem regards the two beliefs expressed as two ab-
stracted observation sets, and tries to understand their com-
bined bearing on patient state. If she feels that the obser-
vation sets ought to be similar because of the professional
training and standardized operating procedures of the ex-
perts she gets worried, otherwise not.

4 Fusion in the Bayesian framework

From a Bayesian point of view, one would analyze Zadeh’s
and similar problems using an observation spaceO and a
possible world spaceΛ. The observations are actually sets
of observations, test results and interview responses, soO is
the powerset of another setX of possible observations. In
the case of the example, the world stateλ would include all
factors that determine the distribution of observation results
for the patient. So if physician 1 obtained observation set
X1 ⊆ X and physician 2 obtained observation setX2 ⊆ X ,
they would obtain a posterior belief of the patients con-
dition expressible asfi(λi|Xi) ∝ fi(Xi|λi)fi(λi), for



i = 1, 2. Here we have not assumed that the two physicians
used the same sampling and prior distributions. Even if
training aims at giving the two physicians the same ’knowl-
edge’ in the form of sampling function and prior, this ideal
cannot be achieved completely in practice. We do assume
that the two physicians share the possible world set, since
otherwise we would have to make at least some assump-
tions on their correspondence in order to obtain any type of
interesting fusion. In any case, the inference stipulated by
the Bayesian method is that physiciani states the probabil-
ity distributionfi(λi|Xi) as his belief about the patient. If
they use the same sampling function and prior, the Bayesian
method also allows them to combine their findings to ob-
tain:

f(λ|{X1, X2}) ∝ f({X1, X2}|λ)f(λ) =
f(X1|λ)f(X2|λ)f(λ), (2)

under the assumption:

f({X1, X2}|λ)f(λ) = f(X1|λ)f(X2|λ). (3)

The assumption appears reasonable in many cases under
the assumption of no selection bias or other interference,
and an adequately fine-grained possible world setΛ.

It is important to observe that it is the two physicians
likelihood functions, not their posterior beliefs, that can be
combined, otherwise we would replace the prior by its nor-
malized square which means that its mode would get a too
large influence and the real uncertainty would be underesti-
mated. This is at least the case if they obtained their train-
ing from a common body of medical experience coded in
textbooks. To the extent they both obtained their priors in
independent practice, they should however be combined. If
the posterior is reported and we happen to know the prior,
the likelihood can be obtained byf(X |λ) ∝ f(λ|X)/f(λ).
The posterior, likelihood, and prior can be viewed (after
normalization in the case of the likelihood functions) as
probability distributions or as random sets having a single-
ton value. It is interesting to note (as is well known[19]) that
the combination rule is that the posterior of the combined
evidence can be expressed as the (nonempty) set intersec-
tion of the (singleton) random sets describing the prior and
the two likelihoods.

The Dempster-Shafer combination rule[2] is computa-
tionally equivalent to allowing the operands as well as
the result in this combination to be nonempty, not nec-
essarily singleton, random sets. By this statement we
do not claim that this is the way DS theory is usually
motivated. But the model in which Dempster’s rule is
motivated[27] is different from ours: there it is assumed
that each source has its own possible world set, but pre-
cise beliefs about it. The impreciseness results only from
a multivalued mapping, ambiguity in how the sources in-
formation should be translated to a common frame of dis-
cernment. In Dempster’s model the random set intersection
is the required result of fusion. But on closer inspection of
his application example, the impreciseness of sources in-
curred by the multivalued mapping is easily interpretable

as an imprecise probability distribution and it seems not
at all clear why the natural robust fusion operator was not
chosen. The recently introduced Fixsen/Mahler MDS com-
bination rule[14] involves a re-weighting of the terms in-
volved in the set intersection operation: Whereas Demp-
ster’s combination rule can be expressed asmDS(A) ∝∑

A=B∩C m1(B)m2(C) (whereA 6= Θ), the MDS rule is
mMDS(A) ∝ ∑

A=B∩C m1(B)m2(C)|A|/(|B||C|). The
MDS and DS rules are identical to Bayesian fusion for pre-
cise distributions, but when both operands are imprecise,
the MDS rule seems to have a fundamental advantage over
the DS rule, as we shall see in section 5.

A set of distributions which is not a Choquet capacity can
be approximated byrounding it to a minimal Choquet ca-
pacity that contains it (see Fig. 1), and this rounded set can
be represented by a DS-structure. (Figures represent sets
of three-item pdf:s, by projection on two items). It is also
possible, using linear programming, to round downwards
to a maximal Choquet capacity contained in a set. Neither
type of rounding is unique. For large frames it will also be
necessary to constrain the focal elements to a subset of the
powerset.
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Fig. 1: Rounding a set of distributions over three items.
A set spanned by four corner distributions (black), one of
its minimal enclosing (blue *), and one of its maximal en-
closed (red +), Choquet capacities.

Our approach to impreciseness is that impreciseness in
conclusions is caused by impreciseness in sampling func-
tions and priors. In terms of sampling functions used, one
can assume that these are imprecise, non-stationary, esti-
mated with bias, or that they vary within atoms of the cur-
rent frame of discernment which is too coarse for reliably
combining precise probability assessments (inhomogene-
ity). Impreciseness in priors is caused by lack of infor-
mation about the processes involved. An assessment that
the sampling function (actually the product of all sampling
functions used in the assessment) is imprecise gives the
same effect on the body of evidence, regardless of what the
reason is. The difficulty lies in assessing the magnitude of
impreciseness, and this difficulty is somewhat unavoidable.



It seems not to be different from the problems of assessing
subjective probability or belief.

The imprecise distributions we use can, if constrained by
rounding to Choquet capacities, be viewed as random sets.
The corresponding random sets can be combined as before:
take the intersection of the participating random sets and
condition on the result being non-empty. The resulting ran-
dom set can be regarded as a Choquet capacity, the set of
possible distributions forλ. It has been argued in several
papers, among others [28], that a random set union is more
appropriate than Dempster’s rule as a combination rule, and
indeed a large number of alternative combination rules have
been proposed over the years. Another alternative to Demp-
ster’s rule is Yager’s rule[29]. For recent surveys see [4, 30].

The combination of evidence – likelihood functions nor-
malized so they can be seen as probability distributions
– and a prior over a finite space is thus done simply by
component-wise multiplication followed by normalization.
The resulting combination operation agrees with the DS
and the MDS rules for precise beliefs. The robust Bayesian
version of this would replace the probability distributions
by sets of probability distributions, for example represented
as DS beliefs. The most obvious combination rule would
yield the set of probability functions that can be obtained
by taking one member from each set and combine them. In-
tuitively, membership means that the distribution can pos-
sibly be right, and we would get the final result, a set of
distributions that can be obtained by combining a number
of distributions each of which could possibly be right. The
combination rule (2) would thus take the form (whereF
denotes convex families of functions):

F (λ|{X1, X2}) ∝ F ({X1, X2}|λ) × F (λ) =
F (X1|λ) × F (X2|λ) × F (λ). (4)

Definition 1 Therobust Bayesian combination operator×
combines two sets of probability distributions over a com-
mon spaceΛ. The value ofF1 × F2 is {cf1f2 : f1 ∈
F1, f2 ∈ F2, c = 1/

∑
λ∈Λ f1(λ)f2(λ)}

The operator can easily be applied to give too much im-
preciseness: The impreciseness of likelihood functions has
typically a number of sources, and the proposed technique
can give too large uncertainties when these sources do not
have their full range of variation within the evidences that
will be combined. A most extreme example is the sequence
of plots returned by a sensor: variability can have its source
in the target, in the sensor itself, and in the environment.
But when a particular sensor follows a particular target, the
variability of these sources are not fully materialized. The
variability has its source only in state (distance, inclination,
etc) of target, so it would seem wasteful to assume that each
new plot comes from an arbitrarily selected sensor and tar-
get. This and similar problems are inherent in system de-
sign, and can be addressed by detailed analyses of sources
of variation, if such are feasible.

The definition of the robust Bayesian combination oper-
ator involves infinite sets in general and is not computable
directly. For singleton sets is is easily computed, though.

Using this we can immediately combine operands each of
which is generated by mixing of a finite set of corners:

Theorem 1 If F1 = {∑i∈I cigi : 0 ≤ ci,
∑

i∈I ci = 1}
and F2 = {∑j∈J cjhj : 0 ≤ cj ,

∑
j∈J cj = 1}, then

F1×F2 = {∑i∈I,j∈J cij{gi}×{hj} : 0 ≤ cij ,
∑

ij cij =
1}.

Proof hint: Let theconeof a pdf set be the set of non-
negative scalings of its members. Consider obtaining the
cone of the combination by unnormalized combination of
the cones of the operands.

This theorem gives the method for implementation of the
robust operator. After the potential corners of the result
have been obtained, a convex hull computation as found,
e.g., in MATLAB and OCTAVE, is used to tesselate the
boundary and remove those points falling in the interior of
the polytope. We can now make a few statements, most
of which are mentioned in [1, Discussion by Atkinson],[3],
about fusion in the robust Bayesian framework:

• The combination operator is associate and commuta-
tive, since it inherits these properties from the multi-
plication operator it uses.

• Precise beliefs combined gives the same result as
Dempster’s rule and yield new precise beliefs.

• A precise belief combined with an imprecise belief
will yield an imprecise belief in general - thus Demp-
ster’s rule underestimates imprecision compared to the
robust operator.

• Ignorance is represented by a uniform precise belief,
not by the vacuous assignment of DS-theory.

• The vacuous belief is a belief that represents total
skepticism, and will when combined with anything
yield a new vacuous belief (it is thus an absorbing
element). This belief has limited use in the robust
Bayesian context.

• Dempster’s rule is clearly inadequate for combining
the vacuous belief with anything, but here the union
rule gives the ’right’ answer.

So it seems that none of the established combination
rules captures the idea of robust Bayesian analysis. Why
is the robust combination operator not considered an inter-
esting option? One possible answer is that our proposed
combination is not closed under restriction to Choquet ca-
pacities. The more imprecise evidence we have combined,
the more corners will we need to span the result, and Cho-
quet capacities only allow for a bounded number of these.
Some type of approximation is required if we want to stay
within the belief function framework. The most natural ap-
proximation is rounding. In a sense we fit the right answer
into our constraints by creating more – possibly too much –
impreciseness.

Definition 2 A rounded robust Bayesian combination op-
eratorcombines two sets of probability distributions over a
common spaceΛ. The robust operation is applied to the
rounded operands, and the result is then rounded.



An important and distinguishing property of the robust
rule is:

Observation 1 The robust and rounded robust operators
are monotone with respect to imprecision, i.e., if F ′

i ⊆ Fi,
thenF ′

1 × F ′
2 ⊆ F1 × F2.

Theorem 2 For any combination operator×′ that is mono-
tonewrt imprecision and is equal to the Bayesian (Demp-
ster’s) rule for precise arguments,F1 × F2 ⊆ F1 ×′ F2,
where× is the robust rule.

Proof outline:By contradiction; assume thus there is an
f ∈ F1 × F2 with f /∈ F1 ×′ F2. By the definition of
×, f = {f1} × {f2} for somef1 ∈ F1 and f2 ∈ F2.
But thenf = {f1} ×′ {f2}, and since×′ is monotonewrt
imprecision,f ∈ F1 ×′ F2, a contradiction.

5 The robust combination operator on
Zadeh’s example

The example of Zadeh can be seen as a classical inference
where the caseT is inferred by elimination of all alterna-
tives. This must be possible in any useful uncertainty man-
agement scheme. We will illustrate the robust combination
rule by comparing it with standard combination operators
from the literature, on Zadeh’s example and on two versions
of it where we discounted the physicians assessments. In
order to illustrate the result graphically we change the ex-
ample so that theT alternative has probability 0.1 instead
of 0.01 in the two bodies of evidence.

Assume thus that we have obtained information that
physician 2 used a set of tests to eliminate Meningitis which
is unreliable in the sense that there are types of this disease
– unfortunately with unknown frequency – that will only
be eliminated with probability 0.9, whereas other types can
be eliminated with probability 1. These tests have no bear-
ing on distinguishingC from T . This means that there are
persons with Meningitis of this type that will test negative
with probability 0.1. Since we have no prior information
on the frequencies of these types, and since physician 2 has
reported a precise body of evidence, our conclusion is that
his assessment of Meningitis should be the interval(0, 0.1)
instead of the value 0. The relationship betweenT andC
should not be altered, since the tests used for Meningitis
have no discriminating power here. So the discounted as-
sessment should be(k, 0.9 ∗ (1 − k), 0.1 ∗ (1 − k)), for
somek ∈ [0, 0.1]. This set is spanned by the distribu-
tions (0, 0.9, 0.1) and (0.1, 0.81, 0.09). It cannot be rep-
resented as a DS-structure, but can be rounded to{m(T ) =
0.09, m(C) = 0.81, m(MT ) = 0.01, m(CM) = 0.09}.

In figure 2 we have combined the original precise as-
sessments. Dempster’s rule and the robust rule give the
same result,(0, 0, 1), as we expect. In figure 3 we dis-
counted physician 2. The Dempster combination moved all
the way from(0, 0, 1) to (0.9, 0, 0.1), and the MDS rule to
(0.8257, 0, 0.1743). The robust rule gives a result spanned
by (0, 0, 1) and(0.9091, 0, 0.0909). This reflects real un-
certainty correctly in the Bayesian interpretation and also
shows thatT andM are both completely plausible whileC
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Fig. 2: Combing two precise probability evidences in
Zadeh’s example. Dempster’s rule and the robust combi-
nation rule are the same,P (T ) = 1, P (M) = 0 (black *).
The disjunctive rule (blue) gives little possibility of T, and
Yager’s rule (red) is non-informative
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Fig. 3: Combining imprecise and precise evidence in
Zadeh’s modified example (discounting physician 2). ro-
bust rule: black line; Dempster’s rule: red; MDS rule: blue;
maxent estimate: green.



is not, since it was eliminated by the first physician, who
is not yet discounted. Moreover, new information affecting
the credibility ofT will also affectM , and vice versa.

In figure 4 we discounted both physicians, but only by
5% instead of the one physician discounted by 10% in the
last example. The Dempster combination moved a long
way again, to the line spanned by(0.4386, 0.4593, 0.1021)
and(0.4593, 0.4386, 0.1021). This line touches the bound-
ary of the robust combination result, which is now not a
Choquet capacity (black in figure) but has a good rounded
approximation (cyan in figure). The MDS result lies well
inside the robust rule result. The maximum entropy esti-
mate for the robust rule result is the non-informative dis-
tribution (1/3, 1/3, 1/3). When interpreting DS-structures
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Fig. 4: Combining imprecise and precise evidence in
Zadeh’s modified example, both experts discounted. red:
Dempster’s rule; blue: MDS rule; green:maxent estimate;
black: robust rule; cyan: rounded robust rule.

as Choquet capacities in the natural way (this interpretation
can be found in quite many tutorials of DS theory and is
present, somewhat implicitly, in [2]), it is highly desirable
that the combination of evidence gives a capacity that is
contained in, or at least not disjunct from, the robust rule
result. The MDS rule is designed so that the pignistic trans-
form (reallocating the mass of every non-singleton focal el-
ementA uniformly over the members ofA) of the result is
the result of Bayesian fusion of the pignistic transforms of
the operands[14]. Therefore, the results of MDS and robust
Bayesian fusion always intersect. It is also not difficult to
see that the MDS result, viewed as a capacity, is contained
in the robust Bayesian fusion result.

Varying the parameters of discounting a little in our ex-
ample, it is not difficult find cases where Dempster’s rule
gives a capacity disjoint from the robust rule result. A sim-
ple Monte Carlo search indicates that disjointness does in-
deed happen in general, but infrequently. Typically, Demp-
ster’s rule gives an uncertainty polytope that is clearly nar-
rower than that of the robust rule, and enclosed in it. In
figure 5 we show an example where this is not the case
and the result is somewhat paradoxical. It is paradoxical
in the sense that a person viewing DS-structures as capac-
ities would find some bets on the outcome clearly advan-
tageous if he used Dempster’s rule but disadvantageous if

he used the robust Bayesian rule. This seems to be a quite
compelling argument in favor of the MDS rule, where this
cannot happen, or against the habit of explaining DS struc-
tures with the capacity interpretation.
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Fig. 5: A case were the robust rule and Dempster’s rule
give paradoxical results. The operands are shown in green,
the result of the robust combination rule is shown in black
(same as in figure 1), Dempster’s rule gives the result shown
in red *, the Fixsen-Mahler MDS rule shown in blue +.

Of course, one question remains: the DS and MDS oper-
ators are clearly not monotonewrt imprecision. This means
that they either underestimate imprecision or eliminate im-
precision in a way that can not easily be defended, since
it is a by-product of the somewhat arbitrary random set in-
terpretation. The maximum entropy principle can be given
a rational game theoretic interpretation, and gives a quite
different result in many cases.

6 Paradoxical Bayesian Reasoning
The DSmT theory of Dezert and Smarandache has given a
new way to resolve conflicting beliefs[15]. The main idea is
that the frame of discernment (possible world set)Θ is ex-
panded to the setDΘ of symbolic expressions in the orig-
inal frame using∩ and∪ and with equivalence over the
algebraic rules (associativity, commutativity and distribu-
tivity) of equivalence. In this frame there are no intersec-
tions known to be empty, so Dempster’s rule translates to
a rule where no normalization is required, a natural ran-
dom set intersection. Zadeh’s original example translates
to the combination{m(T ) = 0.01, m(C) = 0, m(M) =
0, m(C ∩ M) = 0.81, m(C ∩ T ) = 0.09, m(M ∩ T ) =
0.09}. The fused evidence can also be combined with evi-
dence pointing to possible emptiness of atoms in this frame,
for exampleC ∩ M , which would raise the plausibility of
atoms containingT .

Apparently, the DSm theory combines two ideas: the
elaboration of the frame of discernment, and the use of
the DS combination rule. The two ideas seem orthogo-
nal, one can thus in principle use any combination rule
in the extended frame, like the MDS or robust rule. In
order to see how the robust rule appears in the extended
frame of Zadeh’s example, consider a belief on an atom,
e.g.,M . In an ambiguous context, this is a belief which



can point toM , M ∩ T , M ∩ C or M ∩ C ∩ T , i.e., can
be represented by a mass assignment to the focal element
M ∪ (M ∩ T ) ∪ (M ∩ C) ∪ (M ∩ C ∩ T ) in 2Λ.

The robust Bayesian analog to DSmT fusion would ex-
pand the possible world setΛ to 2Λ, and interpret an esti-
mate of probabilityp : Λ → R as an imprecise assignment
wherep(λ) is allocated to the union of sets containingλ.

For Zadeh’s example, the rounded robust combination
rule yields the bpa:{m((T∩C)∪(M∩C)∪(M∩T )∪T ) =
1}, a rather uninformative conclusion. The reason that re-
sults become rather vague with the robust rule is apparently
that it is significantly more conservative (possibly overstat-
ing impreciseness) than the random set intersection rule. In
the robust Bayesian framework we can not draw useful con-
clusions unless we assume that experts, at least to some ex-
tent, know what they are talking about. This we must ac-
complish - as the theory predicts - with prior information
somewhat damping the atoms that are intersections of the
original atoms. This latter seems to be a key concept in
the hybrid DSm theory. A detailed investigation of the be-
havior of different fusion operators in this framework must
unfortunately wait, but seems a promising future project.

7 Conclusions
Despite the normative claims of evidence theory and ro-
bust Bayesianism, the two are very different in their conclu-
sions. Further work is required for understanding the basis
for assessing uncertainty objectively, so that a given prob-
lem will not have incompatible solutions in the two frame-
works. The latter is particularly important for obtaining an
accepted basis for teaching data fusion, where the robust
and MDS rules seem to have pedagogical advantages. The
teaching aspect is not limited to persuading engineers to
think in certain ways. For higher level uncertainty manage-
ment, dealing with quantities recognizable to users like mil-
itary commanders and their teachers in their roles as evalu-
ators, the need for clarity cannot be exaggerated.
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