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Abstract – This paper presents an evidential segmentation
scheme of multi-echoes magnetic resonance (MR) images for the
detection of brain tumors. The segmentation is based on the mo-
deling of the data by evidence theory which is well suited to re-
present such uncertain and imprecise data. In our approach,the
neighborhood relationship between the voxels are taken into ac-
count thanks to a weighted Dempster’s combination rule. This
process leads to a real region-based segmentation of brain and al-
lows the detection of tumors. In this paper we particularly focus
on the conflicting information which is generated when combi-
ning neighborhood information. We show this conflict reflects the
spatial organization of the data: it is higher at the boundary bet-
ween the different structures. We propose and define a boundary-
indicator based on the amount of conflict. This indicator is then
used as new source of evidence that the specialist can aggregate
with the segmentation results to soften its decision.

Keywords: Evidence theory, segmentation, neighborhood rela-
tionship, conflict information.

1 Introduction

The magnetic resonance (MR) imaging is a grateful tool for
the observation of human anatomy. In particular, this engi-
neering has been developed for the study of human brain
anatomy and is very useful for the diagnosis of tumors.
Indeed, the existence of several MR protocols of acquisi-
tion provides different observations of the brain. Each ob-
servation usually highlights a particular region of the tu-
mor. Then, to elaborate their diagnosis, the physicians can
mentally combine these complementary views and obtain
a more complete information about the tumor. Thus, their
diagnosis is more accurate and confident.
In this medical context, the processing of MR data is still
a challenging problem which usually consists in segment-
ing the MR images into regions. Each region should then
be significant of the anatomical structures and of the tumor
location. Numerous methods were proposed to solve the
problematic of brain segmentation for the detection of tu-
mors. Mostly, they adopt a multi-echoes point of view in or-
der to take into account numerous, complementary and re-
dundant information [1,2]. Thus, this is a data fusion prob-
lem. The existing segmentation methods are based on vari-
ous theories. The probability theory is widely used [1,3–5].
The MR images are often modeled by gaussian mixtures
probability functions. Then, the main difficulty is to prop-

erly estimate these probability density functions. Let us de-
note that is not obvious that the tumor can be modeled by
a gaussian process. Then, some authors detect the tumor as
outliers with respect to a statistical model for normal brain
MR images [6]. Others segmentation methods are based on
fuzzy sets [7]. In particular, one finds several versions of
the Fuzzy-C-Means (FCM) clustering algorithm [8] (auto-
matic [9], semi-automatic [10], includinga priori knowl-
edge [11]). Whereas these methods are simple and fast,
their efficiency depends on the quality of MR images and
are particularly sensitive to noise.
In order to take into account the imprecision and the uncer-
tainty of MR images, we propose the use of evidence the-
ory [12,13] which is well suited to treat such imperfect data.
Moreover, this theory provides combination tools to merge
data issued from several sources (MR acquisition protocols)
while taking into account their complementarity, their re-
dundancy and their possible opposition. Thus, this theory
is convenient to a multi-echoes segmentation approach.
Our segmentation scheme [14] is based on the use of evi-
dence theory. One of its characteristics is to take into ac-
count the spatial dependency between the voxels through
an evidential spatial merging process. This process con-
sists in considering each spatial neighbor as an information
source. In a particular neighborhood, the combination of
the information brought by each voxel globally increases
the knowledge. Finally, this process leads to a real region-
based segmentation of the brain.
In this paper, we focus on the study of the conflict gener-
ated by the spatial combination process. In particular, we
show this conflicting mass brings some information about
the location of the boundaries between the different brain
structures. Moreover, we propose its use for the interpreta-
tion of the segmentation results.
This paper is divided as follow. In Section 2, we present the
main aspects of evidence theory. In Section 3 we describe
the evidential segmentation scheme and its application to
multi-echoes MR images segmentation. In Section 4, we
study and analyze the conflicting information and we pro-
pose the definition of a boundary-indicator based on the use
of the conflicting information. In Section 5, we conclude
and propose some new developments.



2 Evidence theory background

In this section, we describe theoretical background of evi-
dence theory.
Evidence theory, or theory of belief structures, was ini-
tially introduced by Dempster’s works on the concepts of
lower and upper bounds for a set of compatible probabil-
ity distributions [12]. In [13], Shafer formalized the theo-
ry and showed the advantage of using belief structures to
model imprecise and uncertain data. Different interpreta-
tions of the native “Dempster-Shafer” theory successively
appeared [15]. Smets and Kennes [16] deviate from the ini-
tial probabilistic interpretation of the evidence theory with
theTransferable Belief Model(TBM) giving a clear and co-
herent interpretation of the underlying concept of the theo-
ry.

2.1 Belief structures

We suppose the definition of a set of hypothesesΩ called
frame of discernment, defined as follow:

Ω = {H1, . . . , Hn, . . . , HN} . (1)

It is composed ofN exhaustive and exclusive hypotheses.
From the frame of discernment, let2Ω be the power set
composed with the2N propositionsA of Ω:

2Ω = {∅, {H1}, {H2}, . . . , {HN}, {H1 ∩ H2},

{H1 ∩ H3}, . . . , Ω} . (2)

The piece of evidence brought by a source of information
(sensor, agent. . . ) on a propositionA (singleton or com-
posed hypothesis of2Ω), is modeled by the belief structure
m, called Basic Belief Assignment (bba), defined by:

m : 2Ω → [0, 1], (3)

and verifying:

m(∅) = 0, (4)

∑

A⊆Ω

m(A) = 1. (5)

From this function, two belief structures, the credibility
(Bel) and the plausibility (Pl) can be derived by the fol-
lowing equations:

Bel(A) =
∑

B⊆A

m(B), (6)

Pl(A) =
∑

A∩B 6=∅

m(B). (7)

The degree of beliefBel(A) can be interpreted as the to-
tal amount of belief in the propositionA. The plausibi-
lity Pl(A) quantifies the maximum amount of belief po-
tentially attributed toA. The credibility and the plausi-
bility are thus dual notions: the plausibility is defined by
Pl(A) = Bel(Ω)−Bel(A) whereA is the complementary
of A.

2.2 Belief attenuation

The belief structurem models the piece of evidence brought
by a source of information on the different hypotheses of
2Ω. When this source is considered as imprecise or not
completely reliable, the confidence in this source can be
attenuated by a factorα and a derived belief structuremα

is then defined by:

mα(A) = α.m(A) ∀A ∈ 2Ω, (8)

mα(Ω) = 1 − α + α.m(Ω). (9)

The difficulty lies then in the correct definition of the factor
α [17].

2.3 Combination

Let denote{m1, . . . , mJ} J belief structures associated
to J independent sourcesS1, . . . , SJ of information. The
evidence theory provides an adapted framework to fusion
or combine theseJ sources in a synthesized information.
A common operator is the orthogonal sum also called the
Dempster’s combination. Thus, the merged belief structure
m⊕ is defined by:

m⊕ = m1 ⊕ . . . ⊕ mj ⊕ . . . mJ . (10)

For two sources of informationS1 andS2, the merged be-
lief structurem⊕ is given by:

∀A ⊆ Ω m⊕(A) =
1

1 − k

∑

B∩C=A

m1(B).m2(C), (11)

wherek is defined by:

k =
∑

B∩C=∅

m(B).m(C) . (12)

The normalization termk, with 0 ≤ k ≤ 1, can be inter-
preted as a measure of the conflict between the sources to
combine. The Dempster’s combination rule has been justi-
fied theoretically by several authors [18, 19]. However the
normalization step was also criticized [17, 19]. It is very
important to take into account the value of this term: when
k is high (≈ 1), combining the sources is a non-sense lea-
ding to incoherence and involving counter-intuitive beha-
viors [17,20] .

2.4 Decision

For most applications, a decision has generally to be taken
in favor of a simple hypothesis. Within the context of the
TBM, Smets defines and justifies the use of the pignistic
decision rule [16].
Let BetP be the pignistic probability distribution derived
from the belief structurem. BetP is defined by:

BetP (Hn) =
∑

A⊆Ω, Hn∈A

m(A)

|A|.(1 − m(∅))
∀Hn ∈ Ω , (13)

where|A| is the cardinality ofA.



Let us denoteX a pattern to be assigned in one of the
N hypotheses of the frame of discernmentΩ. We de-
note{a1, . . . , aN} the set of all the possible actions, where
ai, i=1,...,N is the decision to assignX to Hi. We name
λ(ai|Hj) the cost of decidingai whereasX belongs toHj .
If we consider the simplest case where the losses are as-
sumed to be equal to1 for misclassification and0 for correct
classification (λ(ai|Hj) = 1 − δi,j), the pignistic decision
rule is writen as:

DBetP (X) = ai with ai = arg max
Hj∈ Ω

BetP (Hj) . (14)

Let us denote that a rejection class can be introduced in the
decision step.

3 Segmentation scheme

In this section, we describe the evidential segmentation
scheme and its application on multi-echoes MR data. Let
us denote that the reader can refer to [14] for more details.
The objective of this process is to divide the MR data vo-
lume into regions significant of the main anatomical struc-
tures in order to detect and locate the tumors.

3.1 Notations

Let p be the number of used echoes andX = [x1, . . . , xp]
a particular pattern to classify.xi represents the gray level
associated with the echoi. The frame of discernmentΩ
is composed of the hypothesesHi, i=1,...,N whereN is ar-
bitrary fixed. Usually,N = 5 and one hypothesis corres-
ponds to a particular anatomical structure among the white
matter (WM), the grey matter (GM) and the cerebrospinal
fluid (CF), the tumor (T) and the œdema (O).

3.2 Segmentation scheme description

The segmentation scheme is divided into three steps:

1. Classification step:each patternX is associated with
a belief structurem with respect to a particular eviden-
tial model;

2. Segmentation step:for each patternX , spatial neigh-
borhood information is integrated via a weighted
Dempster’s combination rule;

3. Decision step: for each patternX , a decisionai is
taken using Eq. (14). Then, the MR volume is seg-
mented into regions.

3.2.1 Classification step

The classification step’s objective is to associate a belief
structurem to each patternX in respect with an evidential
model. Generally, the models depend upon the classifi-
cation problem. Preliminary searches [14] showed that
the distance-based model defined by Denœux [21] is very
convenient in our application. This model is the one used
thereafter.

The distance-based model can be considered as an
evidence-theoretic K-NN rule. LetT be a training set com-
posed of couples{Xs, Hq} whereHq is the hypothesis as-
sociated with the patternXs. Moreover, letωq be the pro-
totype which represents all the training patterns assignedto
Hq ∈ Ω.
The distance-based model supposes that each neighboring
couple{Xk, Hs} ∈ T of X brings some useful informa-
tion to determine the class membership ofX . This infor-
mation is modeled by a belief structuremk defined by:






mk({Hs}) = η . exp{−γs . d(ωs, X)2}
mk(Ω) = 1 − η . exp{−γs . d(ωs, X)2}
mk(A) = 0, ∀A 6= Hs, A ( Ω

, (15)

where0 ≤ η ≤ 1 is a constant,d(ωs, X) is the Mahanalo-
bis distance between the patternX and the prototypeωs and
γs ∈ R+ adjusts the influence on the prototypeωs [22].
ConsideringK independent neighbors, the belief structure
m associated withX is obtained by merging theK belief
structuresmk with k = 1, . . . , K by means of the Demp-
ster’s combination rule:

m = m1 ⊕ . . . mk ⊕ . . . ⊕ mK . (16)

An important key point is obviously the definition of the
training setT . We propose to initially model the MR data
volume by a gaussian mixture. The parameters (mean and
variance) of each normal distribution are then estimated by
the Expectation-Maximization (EM) [23] algorithm. Each
couple (mean, variance) is then associated with a prototype
ωi, i=1,...,N .
Once we have determined the belief structures for all the
patternX , it is already possible to obtain a classification of
the MR volume using the pignistic decision rule. However,
this classification does not take into account the spatially
order which exists between voxels. These relationships are
including in thesegmentation step.

3.2.2 Segmentation step

The basic idea is to take into account the spatial order and
the correlations which exist between the voxels of the volu-
me. Thus, we consider each neighbor of a patternX brings
some information useful to identify the class membership
of X . Let∂X be a particular neighborhood ofX , composed
of M voxels:

∂X = {X1, . . . , XM} . (17)

Usually we consider the 26-connex neighborhood (M=26).
Moreover, letmi, i=1,...,M be the belief structures associa-
ted withXi, i=1,...,M obtained using Eqs. (15-16). It is ob-
vious that the influence of a neighbor depends on its dis-
tance to the voxelX : the larger the distance is, the weaker
should be its influence. Thus, we propose to discount the
belief structuremi by means of a coefficientαi where
0 ≤ αi < 1 depends on the Euclidean distancedε between
Xi andX . Then, we propose:

αi = exp{−β . d2
ε(X, Xi)} , (18)



whereβ ∈ R+. Our study shows thatβ has to be in the
range[0.5; 1.5]. Heuristic results giveβ = 0.6 as a good
compromise.
Finally, the belief structurem′ associated withX is given
by:

m′ = m ⊕ mα1

1 ⊕ . . .mαM

M . (19)

3.2.3 Decision step

Decision making is last step of the segmentation scheme
and consists in determining the class membership of each
voxel of the MR volume. We use the pignistic decision rule
(Eq. (14)) which is the one justified using TBM [16].

3.3 Application to MR data volumes

This short part describes some segmentation results ob-
tained with the proposed segmentation scheme. This
method was applied both on simulated normal brain volu-
mes issued from theBrainWebdatabase [24] and on real
data volumes issued from the Regional University Hospital
Center of Poitiers (CHRU).

3.3.1 Simulated MR data volume

The main advantage of using simulated volumes is that we
perfectly know the characteristics of the images (noise level
(n), radiofrequency bias field intensity level (rf )) and the
class membership of each voxel. The multi-echoes volu-
mes are composed of aT1-weighted, aT2-weighted and a
PD-weighted echoes (p=3). For each volume, a voxel sizes
1×1×1 millimeter. The frame of discernment is defined by
Ω = {HWM , HGM , HCF } (N=3). The volume presented
Fig. (1) is corrupted by some noise (n = 3%) and a bias
field (rf = 20%).

(a)T1 (b) T2 (c) PD

(d) segmentation result(e) ground truth

Fig. 1: One slice of the simulated data volume

Comparing the segmentation result Fig. (1-d) and the
ground truth Fig. (1-e), we observe the efficiency of the seg-
mentation method. The visual results are confirmed by the

segmentation error rate on the volume (ξ) which is equal
to 4.04%. This same volume segmented with the EM al-
gorithm followed by a regularization by an Iterated Condi-
tional Modes (ICM) algorithm provides an error rate equal
to 6.01%. The Tab. (1) presents the results obtained for
all the volumes of the database. The evidential segmenta-
tion scheme is denoted EV. We can observe the advantage
of using an evidential scheme comparing to a probabilistic
scheme.

ξ (%) n = 3% n = 5%

rf 0% 20% 40% 0% 20% 40%

EV 4.04 6.20 11.48 6.75 5.55 13.13
ICM 6.01 6.63 14.48 6.48 5.68 14.59

n = 7% n = 9%

rf 0% 20% 40% 0% 20% 40%

EV 5.53 6.10 14.53 7.10 9.59 16.71
ICM 5.73 6.53 17.49 7.50 10.28 18.85

Table 1: Error rates on the BrainWeb database

3.3.2 Real MR data volumes

For clarity, we only propose in this section the results ob-
tained on one MR data volume1. This volume is composed
of a T1Gado2-weighted and aT2-weighted echoes (p=2).
A slice of each echo is represented Fig. (2-(a,b)). A voxel
sizes0.94 × 0.94 × 1.2 millimeter and the volume is com-
posed of256× 256× 89 voxels. The frame of discernment
is defined byΩ = {HWM , HGM , HCF , HT , HO} (N=5).

(a)T1 (b) T2

(c) segmentation result(d) medical expertise

Fig. 2: One slice of the real data volume

1Ten MR data volumes have been segmented at this time.
2The T1Gado-weighted image is obtained using a contrast

product, the Gadolinium.



On Fig. (2-c), we observe that the anatomical structures are
found (from lighter to darker, we find the WM, the GM, the
T, the O and the CF). The Fig. (2-d), represents the medical
expertise of the segmentation: we compare the estimated
regions corresponding to the œdema and to the tumor with
the ones manually defined by an expert. The red regions
corresponds to non-detection (ND), the blue ones corres-
ponds to false-alarm (FA) and the white line corresponds to
well-detection (WD). On the whole volume, the WD rate
is equal to96.54%, the ND rate is equal to3.46% and the
FA rate is equal to8.15%. These rates emphasize the good
efficiency of the method. The results were confirmed with
10 other real volumes.

4 Conflict information

We have proposed a segmentation scheme and showed its
efficiency to divide multi-echoes MR images into regions
which are significant of the brain structures. In this part, we
are interested in the conflicting mass and, in particular, on
the conflict generated during thesegmentation stepby the
combination of neighboring belief structures.

4.1 Origins and meaning

4.1.1 General case

As shown in Eqs. (11, 12), the conflicting mass, denotedk

and such as0 ≤ k ≤ 1, appears when combining belief
structures. It reflects the level of opposition which exists
between the information sources. Three main reasons ex-
plain its presence [20]:

• The first is an aberrant measurement given by a sen-
sor; abnormal measurement (denoted outliers in pat-
tern recognition applications) can generate a conflic-
ting mass during the combination.

• The second reason relies on the definition of the belief
model. Thus, the use of an imprecise or an inappro-
priate belief model may provide a conflicting mass.

• Finally, when the information sources to aggregate are
numerous, a conflicting mass can be induced even if
these sources agree.

Solutions are proposed to manage the conflict problem
through several combination rules. These rules are divided
in two classes. The first one supposes that the sources are
reliable. Thus, the combination operators which can be de-
rived are conjunctive (Dempster [12], Smets [16]). The se-
cond class states that one information source tell the truth
but without knowing exactly which of them. Thus, the
combination operators are mainly disjunctive (Yager [25],
Dubois-Prade [26]).

4.1.2 Spatial conflict

During thesegmentation step, we introduce the spatial in-
formation brought by the neighbors through out a weighted
Dempster’s combination rule. This mechanism obviously
generates a conflicting mass. The Fig. (3) represents the

(a) conflict of the simulated slice

(b) conflict of the real slice

Fig. 3: Conflicting images

conflicting images corresponding to the two MR slices pre-
sented above. The conflicting mass scales from 0 to 1.
On the Fig. (3), we observe that the conflict distribution is
very specific; the conflicting mass is mainly concentrated
on the boundary between the different anatomical struc-
tures. This characteristic can be explained by two particular
situations existing when combining the neighboring belief
structures:

• Inside a region: when the spatial combination is
done inside a region, the majority of the belief struc-
tures supports the same hypothesis. The informa-
tion sources agree and generate a low conflicting mass
(dark points in the images). Let us denote that if one of
the neighboring voxel is corrupted by noise, the others
neighbors, which are more numerous, rectify the false
belief. The spatial combination acts as a spatial filter-
ing which can be considered as a denoising process of
the images.

• At the boundary between structures: when the spatial
combination is done at the boundary between different
anatomical structures, all the belief structures does not
support the same hypothesis. For example, one part
supports the hypothesisHWM whereas the other part
supports hypothesisHGM . Thus, their opposition gen-
erates a high conflict (light points in the conflict ima-
ges) which is significant of a presence of the boundary
between the structures.

These two particular situations explain that the conflicting
mass is mainly localized at the boundary between the struc-



tures and that it is low inside the region corresponding to
the anatomical structures. In order to illustrate this cha-
racteristic, we have extracted from the ground truth of the
simulated brain, the true boundaries between the WM and
the GM. Then, we have superposed these boundaries upon
the conflicting mass obtained at the end of the segmentation
process. The result is represented Fig. (4). The true bound-
aries are drawn in red. As we can see, the true boundaries
and the maxima of the conflicting mass perfectly match.

Fig. 4: True boundaries between the WM and the GM (in
red) superposed upon the conflicting images

However, on the Fig. (3-b), which corresponds to the con-
flicting slice of a real volume, we observe that conflict of
mid-intensity is located within the anatomical regions too
(see the regions corresponding to the WM). We explain the
presence of such a conflict by the imprecision of the belief
model. Indeed, it is more difficult to precisely estimate the
models parameters of a real volume which is composed of
more classes than the simulated volume and which is usual-
ly corrupted by noise. The training imprecision induces
conflicting masses because of the elementary belief struc-
tures combination (Eq. (16)). Thus, this initial conflicting
mass is still present at the end of the segmentation process:
the final conflict (Fig. 3) is composed of the conflict com-
ing from the initial modeling and of the conflict issued from
the spatial combination. We have to be very careful when
analyzing the final conflict.

4.2 Conflict and boundary localization

On the Fig. (3) and (4), we have observed that the distribu-
tion of the conflicting mass is correlated to the location of
the boundaries between the different anatomical structures.
This link indicates that the conflicting masses are informa-
tive data and we propose to use the conflicting masses to
define an indicator about the boundary location. Letc(X)
be the intensity of the conflict associated to the patternX .
Thus, we define the boundary-indicatorI(X) associated to
X by:

I(X) =

{

0 if c(X) < λc

c(X) if c(X) ≥ λc
, (20)

where0 ≤ λc ≤ 1 is a constant threshold. Whenc(X) <

λc, we consider that the conflict is to weak to be signifi-
cant of the presence of a boundary. On the contrary, when

c(X) ≥ λc, two situations are possible. In the first case, the
patternX is located near or on a boundary. In the second
case, the high conflict is due to the presence of noise or due
to an imprecise training.
If we apply the Eq.( 20) to all the voxels of the MR volume,
we obtain a boundary-indicator, denotedI, which reflects
the probable location of the boundaries between anatomi-
cal structures. Obviously, the use and the interpretation of
I depend on the relevance of the thresholdλc.
Experiments made on different simulated and real MR vo-
lumes have shown that the valueλc = µc + 0.2 σc , where
µc is the mean conflict on a MR volume andσ2

c its va-
riance, provides a boundary-indicator coherent compared
to the content of the data (Fig (5)). We notice that the resid-

(a) simulated slice

(b) real slice

Fig. 5: boundary-indicator (λc = µc + 0.2 σc)

ual conflicting lines match with the transitions between the
different structures. The observation of this image is suffi-
cient to provide a good representation of the content of the
initial images.
Thus, we propose to use thisboundaryinformation to com-
plete the results obtained by the previously described seg-
mentation scheme which is aregionsegmentation process.
In particular, the contour information can be used by physi-
cian when they analyze the segmentation results. Within
the context of the aid to decision making, the observation
of such an image can help to adjust the belief about the lo-
cation of tumoral regions.



5 Conclusion

In this paper, we propose an evidential segmentation
scheme dedicated to multi-echoes MR volumes in order to
detect brain tumors. The method combines the modeling of
the knowledge by means of evidence theory and integrates
the spatial dependency between the voxels. The modeling
via evidence theory allows to take into account the charac-
teristics of the multi-echoes MR images: complementarity,
redundancy and incompleteness. Moreover, evidence theo-
ry brings the theoretical support and tools for the combina-
tion of such information. The introduction of spatial depen-
dency makes it possible to obtain, not only a classification
process, but a real segmentation process.

At first, we have described the evidence theory back-
ground and the segmentation scheme. This one is charac-
terized by the modeling of the knowledge by a distance-
based model which realizes a classification step. Inclu-
ding the neighborhood relationship between the voxels by
a weighted Dempsters combination rule, we obtain a real
segmentation process. The efficiency of such a method is
shown through out the segmentation of simulated MR nor-
mal brain volumes and the segmentation of real MR brain
volumes presenting a tumor.
The main contribution of our work deals with the analy-
sis and the interpretation of the conflicting mass. We show
that the conflict generated by the spatial combination of
the belief structures is a useful and significant informa-
tion. It is not only a consequence of data fusion but it is
also an information source about the spatial organization of
the data. Thus, we propose and define an indicator, called
boundary-indicator, which indicates the possible location
of the boundaries between the different anatomical struc-
tures. Within the context of the aid of diagnosis, this infor-
mation can be used by specialists. In particular, it allows to
soften the results provided by the segmentation in regions.
Currently, we continue our investigations in analyzing the
conflicting information and on its integration in the segmen-
tation process. It should allow to obtain a complete seg-
mentation scheme including both region and contour ap-
proaches. This should increase the quality and the confi-
dence of the segmentation results.
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