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Abstract – While traditional data fusion started with systems
which exploit the output of multiple sensors so as to optimise the
characterisation or recognition of objects of interest, modern in-
formation fusion systems will increasingly integrate all types of
information, including behavioural information and information
resulting from modelling, analysis and computation. In many crit-
ical applications, modelling the behaviour of groups of coordi-
nated autonomous entities must be carried out within physically
accurate settings in order to provide realistic information about
their likely behaviour. The simulated entities must conduct au-
tonomous actions which are realistic, which follow plans of ac-
tion, but which also exhibit intelligent reactive behaviour in re-
sponse to unforeseen conditions. In this paper we describe how a
complex and simulation environment can be used to fuse informa-
tion about the behaviour of groups of objects of interest. The fused
information includes the objects’ individual pursuits and aims, the
physical and geographic setting within which they act, and their
collective social behaviour. The group control algorithms com-
bine reinforcement learning, social potential fields and imitation.
We summarise the design of a simulation system that we have de-
signed based on these principles.
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1 Introduction

Discrete event simulation is widely used to model, evalu-
ate and explore operational contexts of real systems under
varying synthetic conditions. Simulation runs can predict
the capabilities and limitations of different operational rules
or of different combinations of tactical assets. Traditionally,
discrete event simulation has concentrated on the algorith-
mic description and control of synthetic entities which are
being modelled as they accomplish some meaningful func-
tion, and simulation research has devoted much attention to
appropriate workload representation and output data anal-
ysis. Less attention has been paid to the design of simula-
tion systems in which individual animated objects (such as
manned or robotic vehicles, or human individuals) are pro-
vided with broad goals (such as “go quickly to that hill, and
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do not get killed”) and are then allowed to dynamically at-
tain the objective based on individual adaptation and learn-
ing [3, 4, 5].

However, simulation is also a sophisticated manner of
fusing information based on multiple and diverse sources,
such as the physical characteristics of the objects of interest,
the physical or geographic environment in which they ex-
ist and act, the goals and intentions of the different objects
being considered, and their social or physical interactions.

The purpose of this paper is to report some recent re-
sults on this line of research. We consider how a variety of
adaptive paradigms, including reinforcement learning, so-
cial potential fields and imitation, can be used in a simu-
lation to investigate how the simulated entities may attain
broadly defined goals without detailed step-by-step instruc-
tions within a physically precise environment. We describe
an experimental test-bed that we have develop and report
on some experiments providing quantitative insight into our
approach.

2 Simulating Collective Autonomous
Behaviour

The actual behaviour of artificial entities is especially im-
portant in the context of simulations designed for training
personnel or evaluating tactical situations. In such simula-
tions, the behaviour of agents will have an important effect
on the final outcome. Unrealistic agent behaviour, e.g., in
the form of very limited or even extremely advanced intel-
ligence can result in poor correspondence to real-life situa-
tions.

Agent behaviour in a sophisticated simulated environ-
ment can be very complex and will involve many collab-
orating or adversary entities. Intelligence can be employed
at very different levels. A simple example will be a team
of agents that has to go from one position to another trying
to minimise travel time and keep out of trouble. A more
complex example of intelligent behaviour can include the
decision to cancel the mission of a group of entities and re-
locating them as a backup for another group. An even more
complex situation would involve several adversarial teams,
each trying to achieve different goals.
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2.1 Related Work

Multi-Agent systems are a very important field in AI since
they emerge as a natural way of dealing with problems of
distributed nature. Such problems exist in a diversity of
areas like military training, games and entertainment in-
dustry, management, transportation, information retrieval
and many others. The classical approach to AI, until now,
has been unable to provide a feasible approach for solving
problems of this nature. The need for such tools has lead
to the “alternative” approach of behaviour-based systems,
popularised by the work of Brooks [7] and Arkin [8]. This
approach takes simple behaviour patterns as basic building
blocks and tries to implement and understand intelligent be-
haviour through the construction of artificial life systems.
Its inspiration comes from the way intelligent behaviour
emerges in natural systems studied by Biology and Soci-
ology. Good discussions on the development of behaviour-
based AI can be found in [9, 10] and an extensive treatment
of the subject is given in [11].

Multi-agent systems interacting with the real world face
some fundamental restrictions. Some of these are:

1. They have to deal with an unknown and dynamic en-
vironment

2. Their environment is inherently very complex

3. They have to act within the time frame of the real
world

4. The level of their performance should be “acceptable”

In order to meet these requirements, agents have to be able
to learn, coordinate and collaborate with each other. Rein-
forcement Learning emerges as one of the “natural ways” of
dealing with the dynamism and uncertainty of the environ-
ment. The complexity of the environment and the strict tim-
ing constraints however make the learning task extremely
difficult. Even simple multi-agent systems consisting of
only a few agents within a trivial environment can have pro-
hibitively expensive computational requirements related to
learning [12, 13, 14].

The behaviour-based systems have been more successful
at dealing with such problems. Biology-inspired models
of group behaviour such as Reynold’s “boids” [15] and ap-
proaches based on potential fields [16] are able to address
group behaviour at a reasonable cost. Because of their per-
formance and ability to scale better, they have been widely
employed in technology-driven fields such as the computer-
games industry [17, 18].

One of the main problems of behaviour-based systems
is that their constituents can be very easily caught in local-
minima. The question of how to combine different (possi-
bly conflicting) behaviours in order to achieve an emergent
intelligence is also very difficult. Multi-Agent Reinforce-
ment Learning in the behaviour domain [19, 20] is an ac-
tively explored approach to solve these problems in a robust
way.

2.2 Our Proposed Multi-Agent Simulator

Our proposed simulator is designed for behaviourally and
visually significant tactical simulations, within a physically
accurate setting such as a Terrain Database. The problem
we address in this paper is goal-based navigation of a group
of autonomous entities in a dangerous terrain. The design
of the agent model is based on the assumption that agents
will perform “outdoor” missions in a terrain containing ob-
stacles and enemies. It is not very suitable for “indoor” mis-
sions like moving inside a building or a labyrinth, where a
more specialised approach will be required. A “mission”
in our model is defined as the problem of going from some
position A to some other position B avoiding being hit by
an enemy, and avoiding the natural and artificial obstacles
present in the terrain. The success of the mission is mea-
sured by the amount of time necessary for the whole group
to achieve the goal and the survival rate.

Our approach is based on a hierarchical modular rep-
resentation of agent behaviour. This method allows for
de-coupling the task of group navigation into simpler self-
contained sub-problems which are easier to implement in a
system having computational constraints due to interaction
with real-life entities.

Different decision mechanisms are used to model differ-
ent aspects of the agent behaviour and a higher level coor-
dination module is combining their output. Such an archi-
tecture allows “versatile agent personalities” both in terms
of heterogeneity (agent specialisation) within a group and
dynamic (i.e. mission-context sensitive) agent behaviour.

The hierarchical modularity of the system also facilitates
the assessment of the performance of separate components
and related behaviour patterns on the overall success of the
mission.

In our current model, we have three basic modules that
we call the navigation module, grouping module and imita-
tion module.

• The Navigation Module is responsible for leading a
single agent from a source location to a destination lo-
cation, avoiding danger and obstacles.

• The Grouping Module is responsible for keeping
a group of agents together in particular formations
throughout the mission.

• The Imitation Module is modelling the case when an
inexperienced agent will try to mimic the behaviour
of the most successful agents in the group and thus
increase its chances of success.

The decisions of these modules are combined at a higher-
level module called the Coordinator Module. This particu-
lar agent model allows modelling of different parts of agent
behaviour using different approaches. Some of these ap-
proaches may incorporate memory (navigation) while oth-
ers others can be purely reactive (grouping) and some may
depend on the performance of other members in an agent
group (imitation and grouping).



2.3 Coordination of Behaviour Modules
The current model of behaviour combination is to get, at
each time step, a weighted sum of the separate decisions
recommended by each basic module, where the decisions
are in the form of a 2D vector representing a request to
move in a particular direction with a particular speed:

~Voverall = knav ∗ ~Vnav + kgrp ∗ ~Vgrp + kimt ∗ ~Vimt

The coordinator can for example give priority to the Nav-
igation Module and inhibit the others when it detects that
they cause an agent to be trapped in a local minimum. The
leader of a group will also honour the Navigation Module,
expecting group members to follow him. Another example
is when emphasis is given to the Grouping Module, help-
ing a wounded or important agent to stay close to the other
members so that it is well protected.

Another degree of freedom comes from the ability of the
coordinator to see the “bigger picture” and not only judge
how much a module should affect the final outcome, but
also give a constructive feedback on how a module should
adjust its internal parameters for the good of the mission.
The basic decision modules that we consider in this work
are described in the following subsections.

2.4 Navigation Module
For the purpose of simplicity and efficiency, the Naviga-
tional Module generates moves based on a quantised rep-
resentation of the simulated environment in the form of a
grid. Terrain properties are assumed to be uniform within
each grid cell for the purpose of learning and storing infor-
mation about the terrain. Each cell in the grid represents a
position and an “agent action” is defined as the decision to
move from a grid cell to one of the eight neighbouring cells.
A succession of such actions will result of a completion of
a mission. The agents can also access terrain-specific infor-
mation about features and obstacles of natural (trees, etc.),
and artificial origin (buildings, roads, etc.) and also pres-
ence of other (possibly hostile) agents. The interaction be-
tween an enemy (a hostile agent) and an agent is modelled
by an associated risk. This risk is expressed as a probability
of being shot (for an agent) at a position, if the position is
in the firing range of an enemy. The goal of the agent is to
minimise a function G (which in this case is the estimated
time of a safe transit to the destination). We use G to define
the Reinforcement Learning Reward function as R ∝ 1/G.

Successive measured values of R are denoted by Rl, l =
1, 2, . . .. These values are used to keep track of a smoothed
reward

Tl = bTl−1 + (1− b)Rl, 0 < b < 1

where b is close to 1. A Navigational Module of an agent
has a so-called “cognitive map” which is a collection of lat-
est and smoothed rewards for each decision taken at each
visited grid cell.

The decision-making element of a Navigation Module is
a fully-connected Random Neural Network [1, 2] consist-
ing of 8 neurons (each representing a possible decision).

The training is performed by reinforcing the weights of
each neuron, depending on the difference between the lat-
est and smoothed rewards; positive difference indicates im-
provement and negative difference indicates deterioration.
The RNN is an analytically tractable spiked neural net-
work model whose mathematical structure is akin to that
of queueing networks. It has “product form” just like many
useful queueing network models, although it is based on
non linear mathematics. The state qi of the i − th neuron
in the network is the probability that it is excited. The qi,
with 1 ≤ i ≤ n satisfy the following system of non linear
equations:

qi = λ+(i)/[r(i) + λ−(i)], (1)

where

λ+(i) =
∑

j

qjw
+

ji + Λi, λ−(i) =
∑

j

qjw
−

ji + λi (2)

Here w+

ji is the rate at which neuron j sends “excitation
spikes” to neuron i when j is excited, w−

ji is the rate at
which neuron j sends “inhibition spikes” to neuron i when
j is excited, and r(i) is the total firing rate from the neu-
ron i. For an n neuron network, the network parameters
are these n by n “weight matrices” W + = {w+(i, j)} and
W− = {w−(i, j)} which need to be “learnt” from input
data. Various techniques for learning may be applied to the
RNN. These include Hebbian learning (which will not be
discussed here since it is too slow and relatively ineffective
with small networks), and Reinforcement Learning.

There can be different ways to apply Reinforcement
Learning in the RNN model. Given the Goal G that the
agent has to achieve as a function to be minimised , we for-
mulate a reward R which is simply R = G−1. Let the
neurons of the RNN be numbered 1, ... , n. Thus each de-
cision i corresponds to some neuron i. Decisions in this RL
algorithm with the RNN are taken by selecting the decision
j for which the corresponding neuron is the most excited,
i.e., the one with the largest value of qj . Note that the l− th
decision may not contribute directly to the l − th observed
reward because of time delays between cause and effect.

Suppose we have now taken the l − th decision which
corresponds to neuron j, and that we have measured the
l − th reward Rl. Let us denote by ri the firing rates of
the neurons before the update takes place. We first deter-
mine whether the most recent value of the reward is larger
than the previous “smoothed” value of the reward which
we call the threshold Tl−1. If that is the case, then we in-
crease very significantly the excitatory weights going into
the neuron that was the previous winner (in order to reward
it for its new success), and make a small increase of the
inhibitory weights leading to other neurons. If the new re-
ward is not better than the previously observed smoothed
reward (the threshold), then we simply increase moderately
all excitatory weights leading to all neurons, except for the
previous winner, and increase significantly the inhibitory
weights leading to the previous winning neuron (in order to
punish it for not being very successful this time). This is de-
tailed in the algorithm given below. We compute Tl−1 and
then update the network weights as follows for all neurons
i 6= j:



• If Tl−1 ≤ Rl

– w+(i, j)← w+(i, j) + Rl,

– w−(i, k)← w−(i, k) + Rl

n−2
, if k 6= j.

• Else

– w+(i, k)← w+(i, k) + Rl

n−2
, k 6= j,

– w−(i, j)← w−(i, j) + Rl.

Since the relative size of the weights of the RNN, rather
than the actual values, determine the state of the neural net-
work, we then re-normalise all the weights by carrying out
the following operations. First for each i we compute:

r∗i =

n
∑

1

[w+(i, m) + w−(i, m)], (3)

and then re-normalise the weights with:

w+(i, j)← w+(i, j) ∗ ri

r∗

i

,
w−(i, j)← w−(i, j) ∗ ri

r∗

i

.

Finally, the probabilities qi are computed using the non lin-
ear iterations (1), (2), leading to a new decision to move
the agent in the direction which corresponds to the neuron
which has the largest excitation probability. By using pre-
viously acquired information and current sensory input, an
agent can start with near-optimal estimates of the rewards
and skip an otherwise prohibitively-long learning session
and focus on adapting to the dynamic changes in the envi-
ronment.

2.5 Grouping Module

Grouping behaviour module is based on the idea of so-
cial potential fields [16] which is a simple distributed-
control approach inspired by the attractive and repulsive
forces between charged particle in physics. Although this
method has been used in a broader domain (including path-
planning), we restrict its usage only to model grouping
behaviour for which it is particularly well suited. Us-
ing potential fields methods for other purposes like gener-
alised navigation and obstacle avoidance requires dealing
with local minima problems and difficult to design force-
configurations that can easily nullify the simplicity gained
by using the method in the first place.

In our treatment, we restrict the form of the force be-
tween agents i and j to:

~Vi,j =

(

−
a

rα
+

b

rβ

)

r̂

where a, b, α, β are dynamic parameters and the force
vector ~Vi,j describes the effect of the position of agent j
on the decision of agent i. When there is a stable equilib-
rium point, an entity experiencing such a force will stay at
a distance R0 from the force source, where

R0 =
α−β

√

b

a

The total effect on agent i can be calculated as:

~Vgrpi
= c ∗

∑

j

~Vi,j

By varying the parameters of each force, different be-
haviours like attraction to an agent, repulsion from an agent
or trying to stay within some distance from an agent can be
modelled - the last being especially important in forming
spatially localised groups.

These behaviours are very similar and can be used to get
the effect of the collision avoidance and flock centring rules
as described by Reynolds [15].

By setting up a two-way mesh of forces between a num-
ber of agents, for example, a spatially localised group can
be created that will try to stay together.

Another simple example is a one-way mesh of forces
from the leader of the group to the other members, suggest-
ing that they should stay close and follow if necessary the
leader, without having any effect on his decision making.

2.6 Imitation Module
The imitation module proposes a decision which is a
weighted sum of the navigational decisions of some of the
members of the agent group:

~Vimti
=

∑

j∈S

wj ∗ ~Vnavj

The weight distribution can be dynamic, in order to re-
flect the group members which are currently observable or
known to be experienced, for example. The purpose of imi-
tation is to efficiently take advantage of experience without
going through the trouble of actually acquiring it - that is,
it has a much lower computational cost, compared to the
other methods.

The velocity matching flock behaviour described in the
work of Reynolds [15] which he defines as “attempt to
match velocity with nearby flocks” is a very similar idea.

3 Experiments
We have developed a multi-agent simulator for testing our
ideas and measuring performance of agent behaviour. The
current simulation testbed was used to perform a series of
experiments under different behaviour module configura-
tions. Figure 1 is an example of the current simulator in
operation.

The terrain size is 200 by 200 units and it is overlaid by
a 50x50 grid. There are 300 trees and 10 buildings present.
A group of 8 agents are in the process of moving from the
lower-left corner of the terrain to the destination area desig-
nated by small flags in the upper right part of the terrain.
The agent group consists of one leader and seven group
members. The distinction between the leader and the rest
of the agents is dictated by the way social potential field
(SPF) forces are configured.

There are two types of SPF forces involved in this setup:

• A two-way force (F1) between group members (ex-
cluding the leader). The force parameters are (a =
1, α = 1.6, b = 16, β = 3.6).



Fig. 1: An example of an ongoing mission in the agent sim-
ulator

• A one-way force (F2) from the leader to the group
members. The force parameters are (a = 1, α =
1.6, b = 4, β = 3.6).

The parameters have the effect of keeping an inter-group
distance of approximately 4 units, and distance between
group members and the leader of approximately 2 units -
in this way, the group is surrounding the leader. The leader
itself is not affected in any way by the other agents.

It is very important that we are able to evaluate and com-
pare the performance of different modes of behaviour both
during and after simulation runs. The performance metrics
used in the simulations presented in this paper are defined
below:

• Group Tension is defined as the average magnitude
of the effective SPF force experienced by agents in a
group. By an effective SPF force we mean the vec-
tor summation of all SPF forces acting on a particular
agent (which happens to be the output of the Grouping
module for that agent). A small value for the group
tension should indicate that the group is well-formed,
while a greater value should indicate internal stress
within the group related to bad spatial formation. This
metric is a particularly good indicator of congestion
within a group. However, the group tension will not
identify cases in which an agent is separated from the
group, since SPF forces decay quickly with distance.

• Group Radius is defined as the average distance from
an agent to the geometric centre of its group. It is an
indicator of how good the spatial formation of a group
of agents is. An increase in the group radius, for exam-
ple, can be used to detect cases when an agent has lost
proximity with its group or when a group is breaking
apart.

• Travel Distance is defined as the average distance
travelled by the agents in a group. It is a good estimate
of the mobility characteristics of a group as a whole.

• Travel Energy is defined as the average energy spent
by members of an agent group. Even very similar mo-
bile agents can exhibit significant differences in energy
consumption based on specific environmental condi-
tions or agent specifics (i.e. vehicle wear), therefore
it is pretty much impossible to devise an accurate en-
ergy metric for a generic mobile agent. However, it
is still possible to to devise a sensible measure of en-
ergy consumption for a range of mobile agents by us-
ing simple physics principles. We assume that increas-
ing the speed of an agent costs energy while breaking
is almost free (as in most ground vehicles). Therefore,
we define travel energy for an agent as the sum of the
positive kinetic energy increments over the time of the
mission.

To illustrate the performance of different behaviour
modes in the agent simulator, we show example measure-
ments of group tension, group radius, travel distance and
energy for a bigger simulated environment. The environ-
ment is a 2000x2000 terrain overlaid by a 200x200 grid.
There are 6000 trees and 100 buildings. The same agent
configuration (8 agents - 1 leader and 7 group members) is
used. Random missions (random initial position and ran-
dom destination within the same terrain) are generated and
an average value for the specified performance metrics over
all the missions is calculated. Figure 2 show measurements
for 1000 different mission simulations. Another set of mea-
surements with the addition of 5 uniformly distributed static
enemies with firing ranges covering a small portion of the
terrain is shown in Figure 3.

There are four different behaviour modes used. The
acronyms used in the figures have the following meanings:

• RL - Everybody uses Navigation Module

• RL+IMI - Everybody uses Navigation Module, group
members (i.e. except the leader) also use Imitation (i.e.
group members imitate the leader)

• RL+SPF - Everybody uses Navigation and Grouping
Modules

• RL+SPF+IMI - Everybody uses Navigation and
Grouping Modules, group members also use Imitation

As far as group tension is considered, the best perfor-
mance is achieved by RL+SPF followed by RL+SPF+IMI.
The other two modes of operation give worse results, which
is understandable because they do not employ social po-
tential fields. On the group radius metric, RL+SPF and
RL+SPF+IMI show approximately the same performance,
with the RL+SPF+IMI mode being slightly better (the dif-
ference is more pronounced when enemies are introduced
in the terrain). On the travel distance metric, we have
almost identical performance for all methods except for
RL+SPF, which is a bit worse than the others (it travels



slower). The best performer on the travel energy met-
ric is RL+IMI followed closely by RL and RL+SPF+IMI.
The most inefficient method is RL+SPF with twice the
travel energy of the other methods. We can say that the
RL+SPF+IMI combination, therefore, offers a reasonable
performance trade-off between different behaviours. Of
course, these simulations were performed with static agent
personalities where the agent behaviour combination was
fixed during the simulation runs. A dynamic behaviour,
based on situational awareness will certainly outperform
these static behaviour modes.

4 Conclusions
Modern tactical simulators often require the representation
of complex autonomous behaviours within a realistic set-
ting. The idea is to ask questions about “what would hap-
pen if ...” for a team of agents, in the context of a real
environment and potential events. This challenge is the fo-
cus of the work addressed in this paper where we consider
how broadly defined goals can be used by teams of simu-
lated autonomous entities to achieve the goals. We consider
a combination of individual and social control schemes as a
way of representing complex behaviours without providing
precise prescriptive directions.

We have discussed the conceptual issues which arise in
this key area of simulation, and presented some design prin-
ciples and a practical implementation. We propose a novel
approach to automatically control the motion of synthetic
agents in pursuit of broad goals, by combining reinforce-
ment learning, social potential fields and imitation. Exper-
iments show that our modular behaviour-based approach is
able to combine simple behaviour modules such that the
emergent composite behaviour outperforms each of its con-
stituents.

Future work will discuss how the teams’ own observed
behaviour can be used to adaptively improve future be-
haviour during the same mission. This will include chang-
ing the manner in which different control modules are com-
bined. We will also investigate the role of diversity, as a
means to achieve overall better team performance. In the
context of adversarial teams, we will study how one can in-
fer the goal pursued by a team so as to provide better track-
ing and countermeasures.
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