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Abstract — Network-centric warfare (NCW) and the interoper-
ability of joint and coalition forces lie among the future warfight-
ing concepts that have been identified by defence. The purpose
behind the introduction of such concepts is to “link sensors, en-
gagement systems and decision-makers into an effective and re-
sponsive whole, through shared situation awareness, clear proce-
dures and the information connectivity needed to synchronise the
actions of the defence force to meet the commander’s intent [1].”
To realise the goal of shared situation awareness for NCW, it has
long been acknowledged that decentralised data fusion is a key en-
abling technology, and to this end it has been investigated in terms
of distributed target tracking and identification, and the develop-
ment of distributed agents and ontologies. However, the aspects of
interoperability relating to the fusion of disparate types of uncer-
tain (local) data from joint and coalition data fusion systems for
shared situation awareness do not appear to have been reported
on in the open literature; fusion of disparate types of uncertain
data has only been considered for centralised fusion systems. In
this paper, these facets of data fusion are considered in tandem for
the automatic target identification problem. In particular, a novel
Bayesian technique is described and demonstrated for fusing es-
timates of target identity generated by local data fusion systems
which employ a mix of Bayesian probability and Dempster-Shafer
formalisms.

Keywords: Target identification, decentralized data fusion,
network-centric warfare, interoperability, disparate uncertainty.

1 Introduction

Network-centric warfare (NCW) and the interoperability of
joint and coalition forces are amongst the future warfight-
ing concepts that have been identified by defencel. The
concept of NCW refers to the “linking of sensors, engage-
ment systems and decision-makers into an effective and re-
sponsive whole” and is achieved through “shared situation
awareness, clear procedures and the information connectiv-
ity needed to synchronise the actions of the defence force
to meet the commander’s intent [1]”. Military interoper-
ability on the other hand refers to “the ability of systems,
units or forces to provide services to and to accept services
from other systems, units or forces and to use the services
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so exchanged to enable them to operate effectively together
[2]”. While the two concepts are distinct, it is evident that
NCW relies heavily on interoperability.

From the perspective of shared situation awareness, data
fusion has much to offer both NCW and military interop-
erability. It has long been acknowledged that decentralised
data fusion is a key enabling technology for NCW, espe-
cially in terms of distributed tracking and identification, and
more recently the development of distributed agents and on-
tologies. For discussions of these topics, see for example
[3,4,5,6,7, 8,9, 10, 11, 12]. There also exists poten-
tial for data fusion to assist in realising interoperability in
a distributed system by fusing (local) uncertain data of dis-
parate types from the individual joint and coalition data fu-
sion systems (although, to date, this problem has only been
considered for centralised fusion systems; see for example
[13, 14, 15]). Ideally, for shared situation awareness in a
network-centric environment, the system should be capable
of performing both aspects of data fusion. Accordingly, as a
first step towards this ideal, this paper proposes a technique
for performing distributed target identification in the pres-
ence of disparate types of uncertainty. In particular, a novel
Bayesian technique is described and demonstrated for fus-
ing estimates of target identity generated by local data fu-
sion systems which employ a mix of Bayesian probability
and Dempster-Shafer formalisms.

The remainder of the paper is structured as follows. In
Section 2, a review of target identification approaches is
presented and the precise nature of the target identifica-
tion under consideration in the paper is stated. In addition,
the standard Bayesian and Dempster-Shafer techniques for
fusing attribute data are recalled and a novel Bayesian al-
gorithm for decentralised fusion of local Bayesian target
identity estimates is proposed. In Section 3, the problem
of fusing probabilistic and evidential data is discussed and
several approaches for approximating a Dempster-Shafer
body of evidence by a probability distribution are outlined
and compared. In Section 4, the overall decentralised target
identification algorithm is described and an example drawn
from the literature is used to demonstrate it. Finally, some
concluding remarks are made on possible avenues for fur-
ther research.



2 Target Identity Estimation

Target identification (alternatively, target identity estima-
tion) refers to the general process of inferring the classifi-
cation or specification of a target based on selected criteria.
What is meant by the identity of a target therefore needs to
be interpreted in terms of these criteria. For example, tar-
get identity may be based on allegiance, such as friend, foe,
neutral, suspect, unknown etc, or on the platform category,
such as fighter, bomber, tanker, commercial airliner etc. It
may also be further refined in terms of the platform type,
for example F/A-18, F-111, C130 etc, or even the specific
platform model or tail number, for example the observed
aircraft is an F-16A with tail number 7632SC [16, p. 17].

With respect to the US JDL Model of Data Fusion (see
[17] for details), target identification is generally regarded
as a Level 1 process, typically involving the analysis of sen-
sor data collected from a variety of possible sensors includ-
ing electronic support measures (ESM), forward-looking
infrared (FLIR) and synthetic aperture radar (SAR) to name
a few. However, there also exist aspects of target identifi-
cation that are arguably Level 2 processes, such as the in-
corporation of intelligence information and the exploitation
of contextual information used for identification by origin
(IDBO), by location (IDBL) or by adherence to normalcy
patterns such as is exhibited by commercial aircraft flying
along airlanes (refer to [18, 19]).

Because of the broad nature of target identification, there
are numerous algorithms for performing target identifica-
tion. According to the taxonomy suggested in [20, p.
215], the algorithms may be placed into three major cate-
gories, namely physical models, parametric classifi cation
techniques and cognitive-based models. The parametric
classification techniques category can be further decom-
posed into the sub-categories of information-theoretic tech-
niques and statistical-based algorithms. It is the statistical-
based algorithms sub-category, which includes Bayesian
and Dempster-Shafer reasoning, that is the focus of the cur-
rent paper.

2.1 Problem Formulation and Notation

Consider a target T that is moving through a surveillance
region in which a network of n sensors has been deployed
for the purpose of identifying 7'. For example in an air de-
fence scenario, 7' may be an airborne target and each node
in the sensor network may correspond to the radar warn-
ing receiver or ESM kit onboard a fighter in a “networked”
n-ship. Let Q = {zy,...,x} denote the set of possible
target types and {Si, ..., S, } denote the set of sensors in
the network. For the sensor data, let {y} } denote the current
measurement from sensor .S;, Y;? denote the set of all pre-
vious measurements from sensor S; and ;! (= {y}} UY?)
denote the set of all measurements from sensor .S; up to and
including the current time. Then the problem is to ascertain
the target type z; of T" given all the available sensor mea-
surements. For the treatment of the problem in the current
paper, the following assumptions are made:

1. (Closed-World Assumption) The set ) of target types
is exhaustive and is used by the (local) target identifi-
cation algorithms at each node;

2. Each node in the sensor network is connected directly
to every other node; and

3. All of the measurements from any given sensor are in-
dependent of all of the measurements from every other
sensor.

Based on this formulation, it is possible to derive a gen-
eral Bayesian approach for performing decentralised target
identity estimation which does not directly involve mea-
surements, but rather a priori and a posteriori probabilities.
As reasoned in Section 2.4, this may be the preferred option
for NCW. However, to be able to employ the algorithm and
ensure interoperability across the nodes in the network, it
is necessary that the local identity estimates at each node
be represented ultimately as an a posteriori probability dis-
tribution. In reality, it cannot be guaranteed that the local
target identity estimates will already be in this form, since
the local target identity estimation at any given node may
employ some other formalism for its processing. A general
treatment of this aspect of the problem is beyond the scope
of the paper. Instead, the special case in which local iden-
tity estimates at each node are directly determined as an a
posteriori probability distribution or as a Dempster-Shafer
body of evidence is considered. The following sections es-
tablish the background on these topics required for the rest
of the paper.

2.2 Bayesian Approach

In the standard Bayesian approach [4], the a posteriori
probability of each target type given the totality of mea-
surements is calculated recursively via Bayes’ theorem and
then the maximum a posteriori probability (MAP) principle
is used to declare a target type if a hard decision is required.
To illustrate this in more detail, suppose that the local data
processing at node 4 for target identification employs the
Bayesian approach. Then, by Bayes’ theorem, for each tar-

get type z;

plz; | YY) = plaj |y, YY) 1)
_ P |2, YD)p(x; | YY) @

p(yi 1Y)
= C 'ply; | z)plz; YY) (3)

where p(y; | z;) is the likelihood of observing measure-
ment y; if the true target type is z;, and p(z; | Y,2) is the
a priori probability? that the target type is z;. Note that
the term C' = p(y; | Y;°) is constant with respect to z;
and so is easily found by using the fact that the a posteriori
probabilities must sum to 1.

Having updated the a posteriori probabilities, the MAP
principle may be invoked to declare the target type as z,
where

k= arg{ max {p(z; | i} @)

2To initiate the process in the absence of any measurements,
typically a non-informative (i.e. uniform) a priori distribution
with p(z; | @) = 1/k is assumed for the set of target types.



2.3 Dempster-Shafer Approach

In the standard Dempster-Shafer approach [21], evidence
about the target identity from each sensor measurement is
represented as a body of evidence (F, m) comprising a set
of focal elements F and a basic belief assignment m on the
set of target types Q2 (which is referred to as the frame of
discernment). With each new sensor observation, the body
of evidence representing the measurement is typically com-
bined with the previously pooled evidence via Dempster’s
rule of combination to produce an updated body of evidence
that incorporates all the evidence from the totality of mea-
surements to date. Finally, to declare a target type if neces-
sary, the pignistic probability approach described in Section
3.1.1is often used. To illustrate this in more detail, suppose
that the local target identification algorithm at node i em-
ploys Dempster-Shafer reasoning. Then, denoting the body
of evidence for the current measurement y; as (Fyr,my1)
and the pooled body of evidence from the the previous mea-
surements® as (Fyo, myo), the body of evidence for the up-
dated target identity evidence is calculated via Dempster’s
rule of combination as follows. For each subset A of (2, the
updated basic belief assignment is

1
my:(A) = % Fr%::Amy} (F)-myo(G)  (5)
where
K= " my(F)my(G) (6)

FNG=2

and in both cases F' € F,1 and G € Fyo. The updated set
of focal elements is

Fya ={FNG|F € Fp,G € Fyo,FNG £ 2}. (7)

Having updated the pooled body of evidence, the MAP
principle may be applied to its pignistic probability distri-
bution {BetProby-1 (z;)} (refer to Section 3.1.1) to declare
the target type as =, where

K= arg(]inllax BetProby.: (z;)). (8)

2.4 Bayesian Fusion with A Posteriori and
A Priori Probabilities

In the last two sections, the Bayesian and Dempster-Shafer
approaches to the processing of sensor measurements for
updating target identity estimates locally at each individ-
ual node were reviewed in brief. To fuse the measurements
from all of the nodes to produce a global target identity es-
timate, there are a number of approaches. One approach is

SUnlike the Bayesian approach which requires an initial a pri-
ori distribution of target types to be set, no such initial condi-
tions are required for the Dempster-Shafer approach because the
body of evidence for the first measurement is regarded as the
first update. However, if desired, the vacuous body of evidence
(Fo,mg) with Fu = {Q} and mz(Q) = 1 may be used to
represent the “initial pooled evidence” in the absence of any mea-
surements [21, p. 38]. The results are the same either way.

to produce a global estimate by fusing the measurements
at a central node; this is aptly named centralised identity
fusion. To produce a global estimate by any other means
is referred to as decentralised identity fusion. In the cen-
tralised approach, all of the sensor measurements are sent
to the central node for processing where they are fused re-
cursively for example by using Bayes’ rule or Dempster’s
rule of combination. The main decentralised option is to
fuse the measurements locally at each node as previously
described and then fuse the local target identity estimates
to produce a global target identity estimate. While the cen-
tralised approach is easier to implement, it is more vulnera-
ble than the decentralised option described because the loss
of the central node would result in the total breakdown of
the network. Under the decentralised approach, the network
would continue to function even if multiple (< n) nodes
were lost, with the added benefit that each node could con-
tinue to function autonomously if necessary. For these rea-
sons it may be argued that, in the context of NCW, the de-
centralised approach is the preferred option. Accordingly,
in the remainder of this section, a novel algorithm is pre-
sented for performing decentralised Bayesian target identi-
fication in the manner described (subject to the assumptions
made in Section 2.1).

To derive an appropriate update equation, suppose that m
of the n sensors S;,, Si,, ... ,S;, have each made single
observations since the previous global target identity esti-
mate of each target type z;

plz; | Y, Y) 9)

n

was calculated. To determine the updated global estimate
in Expr. 10 from the previous global estimate in Expr. 9,
the following reasoning may be employed cf. [22, p. 11]:

p(a; | Yo, Y5 WY s ) (10)
= p(xj|yi1a"'vyimﬂyloﬂ"'ayr?) (11)
= Cflp(yill,...,yzlm|:z:j,Y10,...,Y7?)><

plz; | YY,..., V0. (12)

The last Expr. 12 foIIows by Bayes’ theorem, where the
term C1 = p(y; ...,y | YP,...,Y?) is independent
of ;. Since the measurement y1 foreachr =1,... ,mis
independent of the measurements in each set Yo(k # i),
Expr. 12 can be rewritten as:

al (i, |2, Y)

Applying Bayes’ theorem once more to each of the terms
in the bracketed product gives

pla; | Y2, ... Y0).

n

(13)

C_l ﬁ p(mj | yzra 17‘) (yzr | )
! 1 p(z; | Yz?)
p(«T] | )/105 ’ Yv?) (14)
m 1
p(z; |Y;) 0 0
= C - Y0, Y0 (15
2 Tl;[l p(mj | Y;g) p(x] | 1> 3 n) ( )




where Cy = C7' [T, p(yi | Y?) is independent of z;.
Since Expr. 15 is equal to the global a posteriori estimate of
x; in Expr. 9 and it involves only the local a posteriori and
apriori estimates and the global a priori global estimate of
x;, together the two expressions provide a suitable update
equation. (It is noted that, as in the standard Bayesian ap-
proach, the value of C5 can be found by using the fact that
all of the a posteriori probabilities must sum to 1.)

3 Fusion of Discrete Uncertain Data of
Disparate Types

In Section 2, the network-centric aspects of the decen-
tralised target identification problem were discussed. In this
section, the interoperability issue of fusing finite datasets
with disparate types of uncertainty is addressed.

In the literature, two main techniques for handling dis-
parate uncertain data have been reported. The first is the
unified approach such as that taken in random set theory
[14, 23] which seeks to represent different forms of uncer-
tainty, for example probabilistic, evidential and possiblis-
tic (fuzzy), as specialisations of a general theory of uncer-
tainty. The other approach involves transforming data from
one type of uncertainty to another [15, 24, 25, 26].

In the particular case of fusing a finite Bayesian proba-
bility distribution {p(z; | ¥;})}*_, and a Dempster-Shafer
body of evidence (Fy.1 ,my:1 ) defined on the same frame
of discernment €2, there are several options. One is to ig-
nore the a priori information available from the Bayesian
distribution and simply regard it as a body of evidence
<}‘Yi11,my1_11) which may then be fused with <}‘Yi12,myl_12)
using Dempster’s rule of combination. A second option is
to try to incorporate the a priori information as generalised
likelihoods in the fusion of the Bayesian distribution and
the body of evidence either by regarding them both as ran-
dom sets and using techniques described in [14] or [23], or
by regarding them both as belief functions and using tech-
niques described in [7]. A third option is to transform the
body of evidence <fY32 , myi;) into a probability distribu-
tion on . By regarding each term in this distribution as
an a posteriori probability p(z; | Y;) for the appropriate
x;, it may be fused with p(z; | Y;!) using the technique in
Section 2.4. This is the approach that is investigated in the
remainder of the paper.

In the sequel, three techniques for transforming a body
of evidence into a probability distribution are outlined and
compared.

3.1 Approximating Bodies of Evidence by
Praobability Distributions

3.1.1 Pignistic Probability Approach

The first of the techniques for approximating a body of ev-
idence by a probability distribution is that based on pig-
nisitic probabilities, which play an integral part in Smets
and Kennes [27] transferable belief model (TBM). The
TBM is their interpretation of the Dempster-Shafer model
and employs the same representation of beliefs via bodies

of evidence (or equivalently belief functions), but it incor-
porates additional conjunctive, disjunctive and condition-
ing functions for manipulating evidence beyond Dempster’s
rule of combination alone. The TBM is a two-level model.
The credal level is used to represent and manipulate beliefs
using belief functions and Dempster’s rule of conditioning
as has already been outlined, while the pignistic level is
used for decision making. At the pignistic level, the pro-
cess for decision making is to use the beliefs at the credal
level to construct a probability distribution on Q - the pig-
nistic probability distribution - and then to apply the MAP
principle to the distribution for making the decision. The
pignistic probability distribution BetProb is constructed by
setting

BetProb(z;) = (16)

>

FEF|a;€F

m(F)/|F|,

for each z; € Q, where F denotes the set of all focal ele-
ments in the body of evidence [27, p. 202].

3.1.2 Bayesian Approximation Approach

The second technique is based on Voorbraak’s approxima-
tion of a body of evidence [28]. The associated probability
distribution is similar in form to the pignistic probability
distribution. The motivation for its definition was not deci-
sion making though, but rather the problem of reducing the
computational complexity of reasoning with bodies of evi-
dence. While a more common strategy for this problem is to
prune the set of focal elements and redistribute the masses
from the pruned elements [29], Voorbraak instead approx-
imated the body of evidence by replacing its basic belief
assignment m with a Bayesian basic belief assignment* m
such that for each subset A of Q

ZAQFe]-' m(F) . _
m(A) = { SrermIIF] if[A] =1,
0 otherwise

(17)

where F denotes the set of all focal elements in the body
of evidence. The basic belief assignment m is referred to
as the Bayesian approximation of m and the denominator
> rerm(F)|F| in each term is known as the Bayesian
constant for m. It can be shown that m possesses the prop-
erty that

my © my = my O my, (18)
where @ denotes the operator for Dempster’s rule of com-
bination, and so the order in which the approximations and
combinations are performed does not influence the final re-
sult [30]. Strictly speaking, the function m is a basic be-
lief assignment defined on the power set p(12), but in Sec-
tion 3.1.4 it is regarded as a probability distribution on 2.

3.1.3 Aggregated Uncertainty Approach

The final technique arises from the aggregated uncertainty
(AU) measure in Dempster-Shafer theory (based on the

A basic belief assignment is said to be Bayesian if and only if
all of its focal elements are singletons [21, pp. 19, 54].



Shannon entropy) which was proposed independently by
Maeda, Nguyen and Ichihashi [31] and Harmanec and Klir
[32]. Given a body of evidence (F, m), its aggregated un-
certainty is defined to be [31, 32]

k
AU(m) = max{ f(z;)} (19)

=1

where
_ J—p(z;)logy p(z;) ifp(z;) >0,
flzj) = {0 ! ! ifp(.r;) —0. (20)

and the maximum is taken over all {p(z;)} such that
plz;) € [0,1] forall z; € Q, Y5 p(z;) = 1, and
forall A C Q, Bel(4) < szeAp(xj). The unique
set {p(z;)} at which the maximum is realised is the AU
probability distribution. It is noted that the aggregated un-
certainty AU (m) of (F,m) is simply the Shannon entropy
of the AU probability distribution. An algorithm for com-
puting the AU probability distribution is presented in Ap-
pendix A (for further details, refer to [25, 32, 33]).

3.1.4 Comparison of the Three Approximation Techniques

To date, attempts at meaningfully comparing the three tech-
niques theoretically have been fruitless, so the comparisons
made here are mainly qualitative and are based on empirical
results and properties of the individual techniques.

Probability Distributions for Approximating the Bodies of Evidence
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Fig. 1: Probability distributions for Sensor 1 in the example
given in Section 4

First, it is noted that in practice the probability distribu-
tions produced by the three techniques appear to be very
similar. This similarity has been observed repeatedly with-
out exception over a large number of runs and is illustrated
for a single case in Fig. 1 using the model for sensor 1 in
the problem analysed in Section 4. However, despite this
similarity, it has also been repeatedly observed that for the
most strongly supported target type z; € €, its probabil-
ity is greatest in the pignistic probability distribution, fol-
lowed by the Bayesian approximation and finally the AU
probability distribution. This may possibly be explained in

part by the fact that the pignistic probability distribution has
been developed specifically for decision-making purposes,
and so would be expected to give the best discernment. Fur-
thermore, with regard to the AU measure, examination of
the algorithm for its calculation (refer to the Appendix) re-
veals that in Step 2, multiple target types x; may be as-
signed the same probability and so the AU probability dis-
tribution may be expected to give the poorest discernment.
Ultimately though, these distinctions are at best marginal
and soon vanish after several iterations.

Therefore the selection of an approximation technique is
best made based on the individual properties of the prob-
ability distributions. The AU probability distribution has
the benefit that there is no loss of uncertainty-based infor-
mation (as measured by the AU uncertainty) in using it to
approximate the body of evidence. However, it is far more
computationally expensive to calculate than the other two
distributions because it requires knowledge of the belief of
each subset of 2, while the other two only require knowl-
edge of the basic belief assignment. The pignistic approxi-
mation is desirable because it has a sound theoretical basis.
Finally, the Bayesian approximation is desirable because of
the property stated in Eq. 18 which is useful for data fu-
sion systems that may be susceptible to data latency (out of
sequence data) problems.

Given all these considerations, a single approximation
technique is used for testing in the next section because the
results are expected to be similar across all the techniques.
In particular, the AU probability distribution is used in the
fusion problems for two reasons. First it provides the most
conservative approximation and is therefore less likely to
furnish overly optimistic results and second data latency is
not an issue.

4 Decentralised Target Identification
Algorithm

The results established in Sections 2 and 3 can now be com-
bined to give the following algorithm for decentralised tar-
get identification involving the fusion of local target iden-
tity estimates based on either Bayesian or Dempster-Shafer
reasoning.

Initialisation: Initialise the values of each of the a pri-
ori probabilities p(z; | Y,...,Y;?) and p(z; | Y,%) for
alli = 1,...,nand j = 1,...,k and disseminate them
throughout the whole network. Then proceed to Step 1 if
an observation is made at one of the nodes.

Step 1: If the observation is made at node i;, use the
measurement yzll to calculate the local a posteriori prob-
ability distribution {p(z; | Y;!) ;?:1 or body of evidence
<f161 y My ), in accordance with the reasoning scheme in
use at that node.

Step 2: If node i; employs Dempster-Shafer reasoning,
transform the body of evidence in Step 1 to an a posteri-
ori probability distribution {p(z; | Yi})};?:1 using one of
the techniques in Section 3.

Step 3: Communicate the local a posteriori probability dis-
tribution to each of the other nodes.



Step 4: Use the update equation that was developed in Sec-
tion 2.4 to calculate the global a posteriori probabilities
plz; | VA, Y2,... YY) foreachj =1,... k.

Step 5: Reset the values of each of the a priori probabilities
plz; | VP, Y2)and p(z; | V) forall j =1,... Kk
top(z; | Y, Y2,... .Y )and p(z; | Y;') respectively for
the next iteration.

Step 6: If a new observation is made at one of the nodes,

return to Step 1 and repeat the process.

In what follows, the algorithm is tested and evaluated us-
ing a problem drawn from the literature.

4.1 Example

The example in this section is drawn from [34, pp. 533-
551] and involves the identification of a target which is one
of four different types. Two fictitious sensors are used in
the identification process. For each i, sensor 7 observes a
single fictitious feature f; of the target. The partial proba-
bility databases for the features are illustrated in Figs. 2 and
3. In each figure, the horizontal axis indicates the range of
possible values that the feature may assume. For each type,
the light and dark bars indicate possible modes that a target
of that type may operate in and the vertical heights of the
bars indicate the probabilities of those modes being used:;
for each target type in this example the use of the modes is
equiprobable.

F 1

Fig. 2: Partial Probability Database for Sensor 1

It is noted that based on feature f;, type 3 is a subclass
of type 2, type 1 is partially distinguishable from type 2 and
type 4 is the most distinct. Similarly, based on feature f»,
type 1 is a subclass of type 4, type 3 is partially distinguish-
able from type 4 and type 2 is the most distinct class. If
the true target type is type 3, using sensor 1 alone it is not
possible to identify it uniquely. However, with the help of
sensor 2’s data, this ambiguity can be resolved.

Feature value

Fig. 3: Partial Probability Database for Sensor 2

The example as described has been adapted for the pur-
poses of the paper in the following way. The two sensors

are regarded as the two nodes in a network. At each node,
local target identity estimates are generated in the form of
Dempster-Shafer bodies of evidence. At each time instant,
the sensor at each node makes a single observation and the
updated local estimates are used in turn to update the global
target identity estimates via the algorithm at the beginning
of Section 4. In [34], two distinct techniques are described
for generating synthetic data in the form of bodies of ev-
idence which conform to the partial probability databases.
These are known as the power set (PS) and typical set (TS)
approaches (for detailed explanations of the approaches, re-
fer to Sections 8.5.7 and 8.5.8 of [34]). Hence, three sepa-
rate cases have been considered. In each case the true target
type is known to be type 3. For case 1, the typical set ap-
proach is employed for generating the synthetic measure-
ments and target identity estimates at both nodes. For case
2, the power set approach is employed at both nodes; and
for case 3, the power set approach is employed at node 1 and
the typical set approach is employed at node 2. The results
of these simulations are displayed in Figs. 4, 5 and 6. In
each case, sensor 1 has misclassified the target as expected.
For cases 1 and 3, sensor 2 has not been able to decide be-
tween types 2 and 3. However, in all three cases, the results
from the fused identity estimates from the two sensors have
correctly identified the target type (although in case 2, this
decision has taken substantially longer to make).
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Fig. 4: A posteriori probability distributions (TS-TS case)
following decentralised Bayesian fusion

Finally, for the sake of comparison, in each case the lo-
cal estimates from each sensor were also fused using Demp-
ster’s rule of combination and then transformed into a prob-
ability distribution. In cases 1 and 2, the results were almost
identical to those obtained for the decentralised Bayesian
fusion approach. However, the results in case 3 shown
in Fig. 7 were markedly worse when Dempster’s rule of
combination was used. The correct target identification
of type 3 was eventually made, but long after it had been
made by the decentralised Bayesian fusion approach which
identified the target correctly at the second time step. In
summary, the results of the testing on the decentralised
Bayesian fusion algorithm are very encouraging.
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Fig. 5: A posteriori probability distributions (PS-PS case)
following decentralised Bayesian fusion

Probability Distributions for Power set and Typical Set fused after transformation

D =B — A A D A A - A A

e Pa —©- Type 1
UV A Type 2
- 4 *- Type 3
Bos , o Typed
3
12
o 5 T T 15
1 X = Typel
SN —A- Type 2
N ~ 3 el
205F B 4 g BB — B — @@
g / -— By g B B
n J/ o
0 \ /\N a
o 5 10 15
i / - v — Type 1
o~ , —A- Type 2
3 / ¥ Type3
o Typed
205 / 1
2
E) /
@ \
o o o

Time Steps

Fig. 6: A posteriori probability distributions (PS-TS case)
following decentralised Bayesian fusion

5 Conclusion

In the context of network-centric warfare and military inter-
operability, the problem of performing decentralised target
identification using disparate uncertain data has been inves-
tigated. In particular, a target identification algorithm has
been proposed for fully connected networks in which local
target identity estimates at each node are directly calculated
as either a posteriori probability distributions or Dempster-
Shafer bodies of evidence. The main features of the algo-
rithm include a novel formulation for updating global iden-
tity estimates from local a posteriori and a priori estimates
and a technique for fusing finite Bayesian probability distri-
butions with Dempster-Shafer bodies of evidence based on
uncertainty transformations. The algorithm has been tested
on a small, yet challenging, problem drawn from the liter-
ature with encouraging results being achieved. Finally, it
is noted that the technique may be extended to accommo-
date other forms of uncertainty, such as possibilistic uncer-
tainty, providing suitable uncertainty transformations ex-
ist (for examples of possibility-probability transformations,
see [15, 24, 25]).
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Fig. 7: A posteriori probability distributions (PS-TS case)
following Dempster-Shafer fusion
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A Appendix: Algorithm for Calculating the
Aggregated Uncertainty

Input: A frame of discernment 2 and a belief function Bel
on 2.
Output: The measure AU (m) and the probability distribu-
tion {p(x;)} giving rise to the value of AU.

Bel(A)

Step 1: Find a non-empty set A C Q such that —ar is
maximal. If more than one such set exists, select the one
with maximal cardinality.

Step 2: Foreach z; € A, set p(z;) = Bfiff).

Step 3: Foreach B C (2\ A), set Bel(B) = Bel(B U
A) — Bel(A).

Step 4: Set Q2 =\ A.

Step 5: If Q2 # @ and Bel(Q)) > 0, then go to Step 1.

Step 6: If Bel(2) = 0 and Q # @, then set p(z;) = 0 for
all T € Q.

Step 7: Calculate AU (m) = Y%, f(x;) where f(z;) is
the function specified in Eq. 20.

Stop.
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