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Abstract – Bias estimation is a prerequisite to data fusion in 
ATC environments. Radar networks and aircraft transponders 
have different bias terms which should be cancelled in order to 
perform a correct multisensor tracking. In this paper, several 
general architectures to overcome these problems will be 
proposed, taking into account both radar and aircraft biases. Its 
performance, both in terms of accuracy and in terms of computer 
load, will be analyzed. 
 
Keywords: Radar network, bias estimation, tracking, air traffic 
control. 
 
1 Introduction  
Modern air surveillance systems are composed of sensor 
networks with the aim of achieving better inferences than 
those coming from a single sensor.  
 These sensors are measure sources that must be 
combined in a data fusion process. This implies that data 
fusion needs a correct model of measurement errors, 
including random and systematic ones (biases). 
 In this situation, bias estimation is a prerequisite to data 
fusion in ATC environments. Radar networks and aircraft 
transponders [3] have different bias term which should be 
cancelled in order to perform a correct multisensor 
tracking. 
 In this article the multisensor bias problem in ATC 
environments is introduced. The impact of the existence of 
biases in the tracking process, several algorithms that 
could estimate these biases and finally, the performance 
improvement when these algorithms are included in the 
tracking process, are also presented. 
 The first section deals with the bias problem in 
environments with several radars. It defines the concept of 
bias, why they appear and explains the impact of not 
canceling them. The measure error model applied in this 
architecture is also presented.  
 Section 3 presents the general processing architecture, 
describing each of its parts. In section 4, the bias 
estimation method is developed. Section 5, presents how 
to generalize the bias estimation method to more than two 
radars.  
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 Section 6 shows four possible combinations and 
temporal smoothing schemes for processing radar 
measures. Their features are analyzed allowing the 
election of one of them. Section 7 faces the problem of 
estimating transponder bias. It defines the problem and 
presents a possible estimation method. Finally, in Section 
8, there are some simulation results, which show the 
improvement obtained using bias estimation methods. 
More about these topics could be found in [4,5]. 
 
2 Bias problem in Multiradar detection 
 
As a bias we consider a systematic constant or slowly 
variant error in all measures. These biases are mainly due 
to: 
 

• Incorrect sensor calibration 
• Signal propagation 

 

If these errors are not taken into account, a degradation of 
the multiradar tracking performance may be observed. 
That is the main reason why they should be cancelled 
from sensor measures before passing them to the rest of 
the processing system.  
 As we will develop in next sections, these biases depend 
not only on the radar but also on aircraft transponders. 
 The effect of biases is double: 
• On one hand, they propagate the error to the final 

estimators, because the tracking filter is a low band 
filter so it does not cancel these almost constant 
errors. The most important consequence is that the 
tracking system can generate several tracks for the 
same target, one for each radar that detects it. 

• On the other hand, it causes the appearance of 
certain instabilities in the tracks, giving more 
likelihood to the existence of manoeuvres than it 
should do. The reason is that plots arriving from 
each one of the radars can be quite far away from 
the ones arriving from the others. This causes the 
tracking filter supposes that the aircraft is following 
a trajectory in which it develops one manoeuvre 
after another. 

 
 



The measure error has usually been modelled as a white 
Gaussian zero-mean noise. We define a measure model 
which includes the presence of biases. A SSR measures 
target range and azimuth (R,θ). We are presenting the 
terms appearing in each of the measures due to the 
presence of both biases and noise terms. This analysis is 
going to focus on two dimensions for simplicity reasons, 
but it could be easily generalized for three dimensions, 
including height (R,θ, h). 
The measure model for a SSR is: 
 

 Rm = (1 + K)R + ∆R + baircraft +nR (1) 

 θm = θ+ ∆θ +nθ (2) 
 

 where: 
• Rm: measured range 
• R: actual range 
• θm: measured azimuth 
• θ: actual azimuth 

 
Measure errors in range measures are divided into four 
components. A more detailed analysis of error sources 
either in range or in azimuth could be found in [1]. 
 The fist one is ∆R, the constant range bias. It groups all 
the constant biases in the measure obtained from the radar. 
The next one is K which represents the linear variation of 
biases with range. This term is due to the propagation of 
the signal across the troposphere. Another term is baircraft 
which represent the aircraft transponder error. This error 
represents the variation of the answering delay that the 
transponder waits to transmit the response to the SSR. 
Last term is the measure noise (nR), which is characterized 
as a white Gaussian zero-mean noise. 
 In the azimuth measures, all errors are divided into two 
terms. One that groups all the biases (∆θ), which is 
consider to be almost constant and a noise term (nθ), are 
considered a white Gaussian zero-mean noise. 
  All the estimation methods that are going to be 
presented are based on processing differences of 
measurements taken from pairs of sensors and from the 
same aircraft. In next section, a general processing 
architecture is presented, showing how measures are 
going to be processed. 
 
3 General bias estimation scheme 
 
Tasks implemented in this approach are developed in two 
steps by two different blocks. The following figure 
presents the general processing architecture:  
 
 
 
 
 
 
 

Fig. 1. Global biases estimation subsystem 
 
In the first block, radar biases are calculated. The function 
implemented in this subsystem estimates the radar 

depending biases every T seconds/minutes, and removes 
them from radar measures during next T seconds/minutes, 
until next bias estimation is obtained. In this block, 
measures are accumulated until the moment in which the 
estimation method is applied, every T seconds/minutes. 
 The next step is associated with each individual target. 
In this second block the aim is to obtain the bias 
introduced by the aircraft transponder. This bias is related 
with the error in the response time to the SSR query that is 
present in the aircraft transponder. It is considered that 
this bias is seen by the radar bias estimator subsystem as a 
noise which adds to the measure one. This assumption can 
be made because in a normal ATC environment radars 
will detect several targets. The number of target is 
assumed large enough to consider that aircraft depending 
biases as white noise for this first estimator. 
 The estimation of this bias is calculated for every 
measure, which in this point should not have important 
radar biases, and cancelled afterwards. The estimation 
method will be detailed in sec. 7. 
 Finally, the “bias free” processed measure is then 
delivered to the tracking system an also to the rest of the 
system. 
 
4 Radar bias estimation methods 
 
In this section, several estimation methods for bias 
estimation are proposed. Each of these methods estimates 
radars biases (∆R, K, ∆θ).  
 The theoretic methods that are proposed are: 
 

• Bias estimation based on a LSE estimator 
• Bias estimation based on a MSE estimator 
• Bias estimation based on a Kalman Filter  
 

All these radar bias estimation methods are based on 
processing differences of measurements taken from pairs 
of sensors and referred to the same aircraft. It is important 
to notice that the first measure used in the measurement 
pair needs to be extrapolated (using the velocity 
estimation of the track to which the two plots are 
associated with) to the second measure timestamp.  
 Assuming the extrapolation introduces a negligible 
error, the difference of measurements in Cartesian 
coordinates can be modeled as: 
 

( ) ( )111222 ,, mmxmmx RfRfx θθ −=∆  

( ) ( )111222 ,, mmymmy RfRfy θθ −=∆  
 
Where fx1(·), fx2(·), fy1(·) and fy2(·) are coordinate 
transformation from Polar to Cartesian ‘x’ and ‘y’ 
components respectively and the numeric sub index refers 
to the appropriate radar.    
 Using the error model stated in Eqs. (1,2) it is possible 
to linearize Eqs. (3,4) around the ideal position with null 
biases and noises, obtaining: 
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Where different radars are distinguished by the sub index 
‘i’. The differentiated positions from the pair of radars 
(1,2) translated to horizontal coordinates can be modeled 
as: 
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As could be seen, this linearized model relates the 
observed measurement differences (∆x, ∆y), with the 
parameters of systematic errors for a pair of radars and 
also relates the random error in original measurements 
with its effect on transformed coordinates. This 
relationship is the one that allows us to obtain bias values. 
 For simplification, results are presented assuming 
Cartesian projection on a Flat-Earth model (disregarding 
effects of height errors). The equations of that 
transformation are: 
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being (XRi,YRi) the position of i-th radar on Cartesian 
plane. So the elements in the model can be approximated 
as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The algorithms detailed could be classified in block 
methods and recursive methods. 

4.1 Bias estimation based on a LSE estimator 
 

From the linearized model of the previous section is found 
that there are six independent variables to be estimated. 
This implies at least that six independent measures are 
needed for obtaining three differences of measurements. 
Presenting the previous model in matrix form: 
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where the index j is the index of the measurement pair, 
while εj is the adjustment error for j-th measure. The 
partial derivatives included in the projection matrix should 
be evaluated in the ideal point, but as this is unknown, it 
will be evaluated in the measure point. The later 
expression can be reduced to: 
 

jjj rHx ε+=
rr  

 
where jx

r  is the measurement difference (∆x, ∆y) 
associated with the j-th pair of measures, Hj is the 
projection matrix, while rr is a vector that contains the six 
parameters to estimate. 
 The least square solution is the one that for certain 
parameter values has the lowest total adjustment-error 
power. In other words, it minimized: 
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Next, measure vector x

r is defined as a column vector that 
groups all measures obtained in a certain period of time. 
This vector could be modeled as: 
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Finally, the LSE estimator is: 
 

( ) xHHHxHr TT rr 1#ˆ
−

==  
This expression could be written in function of each 
measure difference, as follows: 
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For resolving this equation it is necessary at least tree 
linear independent measure differences. 
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4.2 Bias estimation based on a MSE estimator 
 

In this method, measures can be modeled as in the 
previous subsection, Eq. 22, with only one change, 
consisting in interpreting iε as the error associated with 
the measures. Defining iε  as: 
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It could be modeled as a Gaussian, zero-mean random 
vector with covariance matrix R. So it could be proved 
that the MMSE estimator [2] has the form: 
 

( ) xRHHRHr TT r111ˆ −−−=  
 

where H is the projection matrix presented in Eq. 25. 
 The main difference with previous method is 
calculating the covariance matrix R. From the 
development presented at the beginning of Sec. 4, 
especially in Eqs. (5-8), the measure error vector 
(projected over Cartesian coordinates) could be 
approximated as: 
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where jF  is the error projection matrix and jn ,0  is a 
vector containing the noise in the measure coordinates. 
This way, the covariance matrix of jn  can be obtained as 
(assuming zero-mean): 
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If we assume that every measurement difference is 
independent, which is true if measurement noises from 
each radar can be considered white noise, the covariance 
matrix of the differences R could be expressed as: 
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The form of matrix R allows us to modify the functional 
expression of the estimator, reaching another expression 
which requires fewer operations. It can be seen that: 
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Introducing (33) in the estimator’s expression leads to a 
simplified one, as is developed below: 
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4.3 Bias estimation based on a Kalman Filter 
 

Another possibility is to model the problem as a dynamic 
one, so an extended Kalman Filter (EKF) can be applied. 
In principle, we will have six state variables and every 
difference should be taken as a measure for the filter. The 
models expressed in a Kalman Filter form will be: 
 
4.3.1 Prediction model 
 

1661 −− =+= kxkkk rIrFr rrr ν  
 
It is assume that the prediction matrix is the identity and 
there is no plant noise. 
 
4.3.2 Measurement model 
 

kkkk nrHx += rr  
 
All the terms in this expression have been already defined 
in previous sections.  
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The Kalman filter associated is defined as a recursive one, 
with the following equations: 
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where kG  is the Kalman filter gain for the k-th sample. 

kfP ,  is the covariance matrix of the filtered estimator 
which is estimated by the filter as the k-th measure is 
available. kR  has been defined in Eq. (31). 
 Simulations of all these methods have proved that 
although all of them behave relatively well, it could be 
said that the better ones are MSE estimator and the one 
based on a Kalman Filter. Estimations obtained with these 
two methods are equal if the noise plant covariance matrix 
is zero, although MSE estimator is computationally more 
efficient.  
 Another thing observed was that although all methods 
behave well, neither of them reached the real biases 
values. The reason for this bias in the estimation was that 
we were using a linear approximation of the 
transformation functions, Eqs. (5-6); so at the time the 
estimated biases were bigger, the bias in the estimation 
also increased. The solution was to change the estimation 
target. We change from estimating total biases to 
estimating differential increases from the previous time 
interval estimate. This change eliminates the bias in the 
estimation as we are moving nearer to the point where the 
transformation function has been linearly approximated. 
 After obtaining bias estimation, there are at least two 
possibilities. The first one is to directly deliver this 
estimation to the rest of the system for removing the 
biases present in the measures. It could be seen that this  
estimation is independent from the previous ones. The 
second possibility is to combine the new estimation with 
the previous ones.  
 If we only keep last estimation, we will be loosing 
information, which means estimation degradation. So it is 
interesting to introduce a combination method which 
adapts to the quality of the estimations. This method 
should forget partially the oldest estimation and calculate 
what weights should be applied to the remaining passed 
estimations and to the new one. All these weights depend 
on the quality of both estimators. There are several 
possible implementations for this method. One of them is 
to modify measure block size, depending on if the 
estimation reaches a certain quality level. Another 
possible implementation is to introduce an extended 
Kalman filter. This option will be chosen for 
implementing this estimation time filtering. 
 As it is mentioned, bias estimation depends on aircraft 
traffic. This situation can be improved if we integrate in 
the bias estimation measures from fixed transponders. If 
these measures are processed, there are several 
considerations to bear in mind. The first one is that if only 
one transponder is used, it is impossible to discriminate 
between ∆R and K. Another one is that these measures 

must be introduced with care because they can introduce 
biases in the estimation. There are two possible schemes 
to introduce that kind of measures: 

• Centralized: it processes those measures as if 
they were measurement differences. 

• Distributed: it processes those measures 
separately from the measurement differences. 
This scheme needs a combination method to 
obtain the estimation from that kind of measures. 

The centralized scheme is better, if the model is totally 
consistent with measures, because it combines measures 
in an optimal way. The problem is that if there are model 
inconsistencies, this scheme leads to a less robust solution. 
On the other hand, the distributed scheme needs fewer 
operations. 
 
5 Generalization to more than two radars   
In this section, the objective is to estimate in parallel 
biases of all radars placed in a certain area. There are 
several possibilities to generalize the system to more than 
two radars, some of them are presented below: 
• Grouping radars in pairs. In this option each radar 

belongs only to a pair. For obtaining these pairs it 
should be kept in mind that the coverage of these two 
radars must be very overlapped. So it could be possible 
to obtain differences of measurement of almost all the 
coverage of each one of the radars. This method need 
N/2 filters working in parallel or (N+1)/2 if the number 
or radars is odd. The output of every filter, if there are 
no estimations that come from fixed transponders, will 
directly be the bias estimation that should be cancelled 
from measures. If there are estimations coming from 
fixed transponders, they should be combined with the 
ones coming from the aircraft traffic. 

• Selecting for each radar an adjacent one. In this case, 
measure difference pairs coming from these two radars 
are only used to estimate the biases of the first one. This 
supposes N filters working in parallel. This method has 
several problems. The first one is that if the coverage of 
both radars is not very overlapped the number of 
measure pairs will not be big enough for obtaining a 
good estimation. Another problem is that not all the 
geometric combinations should be used. Restricting the 
estimation to a radar and another adjacent, can be 
misusing the improvement of using it with another 
radar. In certain situations there could be duplicated 
filters, so a filter can be saved. Therefore the number of 
filters should be between N/2 and N.  

• Combinations of all the available estimations coming 
from all radars pairs. With N radars one can form 
N(N+1)/2 pairs. Each radar should be in N-1 of them, so 
at least can be N-1 possible bias estimations for each 
radar. Some of them are rejected because the coverage 
of the two radars is not overlapped enough. From the 
rest a combination is needed. One of the possible 
combinations is obtaining the mean value of the group 
of bias estimations and another is applying an optimal 
Bayesian combination.  

(37) 

(38) 

(39) 



6 Several schemes for measure 
combination and time smoothing 

 

In the previous section, methods for combining several 
bias estimations obtained in different time instants and 
other methods for combining bias estimation obtained at 
the same time were described. But the combination of 
these two estimation processes can admit two possible 
orders: 
• First the time smoothing for each radars pair, and 

after that, the combination of all the estimations for 
one radar. 

• The combination of all the bias estimations for certain 
radar, followed by a time filtering of the bias 
estimation of each radar. 

In these schemes, the same measure will be used to 
calculate biases in all radars pairs that are detecting that 
aircraft. This supposes a certain correlation between the 
estimation errors present in the estimations.  
 It is important that bias estimations were performed for 
synchronized time blocks for all the different sensors 
pairs.  
 In the following schemes several possible options are 
depicted. In these schemes, we assume that differential 
biases ( )(kxi∂ ) are calculated, for each radar, after 
completing a measure block. )(kx∆ represents the final bias 
estimator (total biases) obtained after processing measures 
contained in k-th time interval. These values will be used 
to correct arriving measures in k+1 interval.   
 In the first method (Fig.2), we add total biases obtained 
in last interval to the difference biases obtained in this 
time interval. Previously, all the differential bias 
estimators related to a radar have been selected. 
Afterwards, a bias combination is performed, and finally a 
time smoothing, weighting previous biases with the new 
ones. 
 
 
 
 
 
 

 
 

Fig. 2. Combination followed by time filtering 
 
The second option (Fig.3) is very similar to the latest one. 
The main difference is that in this case a combination of 
differential corrections is performed, instead a 
combination of total corrections.  
 
 
 
 
 
 
 

 
Fig. 3. Combination of differential corrections followed by time 

filtering 
 

The third method (Fig.4) starts performing a time filtering 
of complete biases (after selecting and adding the 
differential estimators to the previous estimated ones) 
which correspond to each of the radar pairs and continues 
making a combination of these biases. The result is the 
complete bias estimator for each radar. 
 
 
 
 
 
 
 
 

Fig. 4. Uncoupled time filtering followed by bias combination  
 
The forth method (Fig.5) is a solution developed from the 
previous one. Here, instead of filtering all selected biases 
for certain radar in a separated way, biases belonging to 
the two radars are filtered together. Before doing that, 
previous estimations should be added to the differential 
ones, as could be seen in the figure.  
 The main difference with the previous method is that 
this one can extract information kept in cross correlations 
that the other one cannot. Nevertheless, this method has 
more computational load.   
 
 
 
 
 
 
 
 
 

Fig. 5. Coupled time filtering followed by bias combination  
 

Analyzing these four methods, it is seen that the first 
method is totally equivalent to the second one, which also 
has less computational load, so it can be rejected. 
 The second method is the one with lowest computation 
load, because it only has one time filter for radar, instead 
of one for each radar pair, as in the other methods. 
Considering that the estimation is only calculated once 
every T seconds/minutes, it could be seen that with a 
modern computer it does not take much time. So the load 
criterion is not very important.  
 Analyzing the consistency of the obtained estimators 
shows that as all measures are introduced to all radar 
pairs, either cross correlations are calculated or the 
estimations obtained are suboptimal.  
 The last two methods allow a consistent time filtering, 
even though the combination will be suboptimal. Since, 
these two methods use less suboptimal approximations, 
they are preferred. Between these two methods, the 
chosen is the latest one, because it makes use of the cross 
correlations between the estimators of the two radars in 
the time filter. 
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7 Estimating airborne transponder bias  
As was mentioned in Sec. 2, the biases cancellation is 
divided into two parts, one depending on radars and 
another depending on aircraft transponders. In this section 
the estimation of airborne transponder bias is going to be 
presented.  
 This estimation must be obtained for each measure so 
accumulations of measures are not possible. Data received 
by this subsystem is assumed to have null radar bias. The 
measure model for a SSR which has null radar biases is: 
 
 Rm = R +  baircraft + nR (40) 

 θm = θ + nθ (41) 
 

The measurements in Cartesian coordinates can be 
modeled as: 
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The differentiated positions from a pair of radars 
translated to horizontal coordinates can be modeled as: 
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This could be represented in matrix form as: 
 

nbH
y

x
r aircraft

ji

ji
+=













∆

∆
=∆

r  

 
In this form, it is easy to obtain the expression of an 
estimator using the same ideas in Sec. 4. Vector n is 
considered as a white zero-mean Gaussian noise whose 
covariance may be easily modeled. As in the radar biases 
case, there are several possible estimators. For this case, it 
has been chosen an estimator based on an extended 
Kalman filter, whose equations are very similar to the 
ones presented in Eqs. (35-39) 
  
8 Simulation results and conclusions  
The results are obtained from a simulated ATC scenario 
with ten aircraft uniformly distributed in the space and 2 
radars to fuse, which are separated 200 Km, have a period 
of 4 s/scan and the following biases: ∆R=100m, 
K=150/max range, ∆θ=0.04º.  
 From all the possible combinations for estimating radar 
biases, the MSE estimator is the chosen one. The results 
are presented in the figures below. In all the figures 
different biases are presented versus the number of 
measures; the line in red is the estimated value and the 
lines in blue represent the estimated value +/- σ 
(estimation covariance). 
 

 
 
 

 
 
 

 
 
 

(42) 
(43) 

(44) 
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Fig. 6. Range bias (∆R) estimation of radar 1 

Fig. 7. Range bias (∆R) estimation of radar 2 

Fig. 8. Azimuth bias (∆θ) estimation of radar 1 



 
 
 

 
 
 

 
 
 
In the case of the aircraft transponder bias (Fig. 12), the 
trajectory of the target analyzed crosses the line that links 
the two radars. The real value of the transponder bias is 
50m. As in the other figures, the line in red is the 
estimated value and the lines in blue represent the 
estimated value +/- σ (estimation covariance). 

 
 
 
In conclusion, as it is shown all the estimators converge to 
the real bias values. Another issue to consider is that final 
bias errors depend strongly on the scenario geometry 
defined by aircraft trajectories with respect to sensor 
positions. The higher variation of geometry parameters 
(number of aircraft, trajectory diversity and length, etc.) 
along the processed measures, the higher observability 
and accuracy to derive bias estimators. 
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Fig. 9. Azimuth bias (∆θ) estimation of radar 2 

Fig. 10. Propagation bias (K) estimation of radar 1 

Fig. 11. Propagation bias (K) estimation of radar 2 

Fig. 12. Target transponder bias (baircraft) 


