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Abstract - We examine the use of fusing data from multiple data
sources for use within object recognition systems. We then
continue, to illustrate the system that we have created for our
own object recognition needs. The data fusion model that we use
is embedded within an object recognition system that analyses
simulated FLIR and LADAR data to recognise and track
aircraft. The data fusion is based upon the Transferable Belief
Model (TBM) and Kalman filters. The system is novel due to the
simulation of the sensors and the use of multiple Kalman filters
and TBM’s.
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1 Introduction

The use of data fusion within object recognition systems is
becoming more evident, as it becomes apparent that better
true positive rates can be achieved through the use of
disparate data sources. This can be within a variety of
scenarios such as robot navigation, analysis of humans,
and military applications. Many of these are based upon
the same idea that some object is to be observed and
recognised, and then some analysis is done upon that
object. Single sensor systems are applicable in certain
scenarios, but many require a multi sensor, multi modality
approach. Through the use of more than one sensor, and
possibly modality, the object under scrutiny can be viewed
in a variety of ways. Each of these collecting a different
piece of information about that object. The combination of
these observations allows for a more complete
understanding of the object which is being viewed. It also
provides a more robust definition by lessening the effect
of random sensor error, or even failure.

Our application is an air to air missile based
simulation system, where we use both LADAR and FLIR
sensor images for the recognition of our objects. The
sensors themselves are simulated within the software [1,
2] allowing for us to present any scenario to the object
recognition system, for testing purposes. The system is a
continual feedback model, where each fused result is fed
back into the system to assist with the recognition phase in
the next time cycle. This paper furthers on previous work
[3] by providing a more in depth review and analysis of
the fusion algorithm, and results, showing its ability to
produce effective classifications of objects in a variety of
challenging scenarios.

2 Paper Overview

In Section 3 we take a look at some of the different
technologies available for the fusion of data from multiple
sources. In Section 4 we review the techniques used for
recognising objects within our system. Section 5 shows
the fusion strategy that we have employed and the
algorithms that go with this strategy. The results of the
fusion algorithms are shown in Section 6. They show how
the system reacts with a variety of data inputs. Finally we
conclude our results in Section 7

3 Data Fusion Technologies

To combine data from various sensors we ‘fuse’ the
information in such a way that the information obtained
from the output is greater than the sum of its parts. There
are a variety of techniques for the fusion of data, as well
as different levels. The levels that we fuse at are low,
intermediate and high.

In the modern world, we have the ability to
analyse a scene with an ever increasing range of sensing
modalities. We need to be able to bring the information
together so that we get ‘the best’ out of each sensor,
allowing for the robustness of any output to be as close to
optimal as possible.

Fusion is a way in which we can combine
sources of data, which are more often than not, uncertain
in some way. A range of mathematical procedures have
arisen over the years to help us deal with those
uncertainties. Probability theory is the earliest of these
approaches, but more recently others have come into play.
These include fuzzy sets [4], possibility theory [5], the
theory of fuzzy measures [6, 7] and evidence theory [8, 9,
10]. Each can have its strengths and weaknesses, and be
more suited to particular scenarios. One of the
requirements for our system was that it would be flexible
enough to deal with the nature of our data. This meaning
that at times matches from our data could be non existent
due to sensor, or algorithm, failure. Such is the nature of
our data. We also liked the idea of lack of knowledge,
apriori, to be perfectly acceptable within our system.
These necessities turned us toward the evidence theory
approach, and then to the TBM [11]. The flexibility of this
approach allows for us to model closed and open worlds,
so we can entertain the possibility of objects outside of
our world being the target as well as a scenario where we



have little or no information and so are not in a position to
make a decision. Total ignorance can be modelled,
showing a distinct lack of knowledge about our scene at
any point. If we do have prior knowledge then this can be
utilised. If the information that we have is only based on
singleton hypothesis then the TBM approach becomes the
Bayes’ approach. This provides a very flexible system,
which encapsulates all of our requirements.  This is a
novel approach that has not seen use in this domain
before. There are a variety of works utilising the Dempster
Shafer Theory (DST) approach, but these have
shortcomings in a scenario such as ours. The superset can
explode with the curse of dimensionality within DST and
when combining beliefs they will become normalised,
which can lead to a false sense of security when making
your decisions. We use the TBM to overcome the
shortcomings of the DST and create a more robust form
for fusing the data.

4 The Object Recognition System

There are not three distinct levels of interpretation for all
systems but this can be taken as the routine of a typical
one [12].

At the lowest levels the fusion of data is
performed on the image to detect features and segment the
image. The process can look for areas of similar data and
then group it to give regions of interest. This reduces the
amount of data being passed to later phases, which are
computationally heavy. Fusing at the intermediate stage
takes place on feature attributes and values. Here we may
be trying to discover the surface shape, material type or
pose of the object.  At the highest level we try to classify
parts of the scene or interpret features previously
extracted. This is where we ‘label’ the scene.

Within our system we fuse data at varying levels
to find the pose and object type. This can then be used to
refine the lower levels in the following frame. We fuse
data obtained from our object recognition stage. When
recognising our objects we determine the object type and
its pose. The 2D FLIR matching algorithms use template
matching to acquire the 3D pose and type of the object. A
fitness measure is also output indicating the quality of the
match. Similarly, for the 3D LADAR match an overall
fitness measure is generated from the matching process.
Even though it is the actual type and pose that we fuse
together we need the fitness measures to indicate which
sensor is performing well at that point, or if any. The
higher the fitness measure the more we believe the match
from that sensor.

The matches are fused for framen to provide a
more robust result. This is then used as part of a feedback
loop. This feedback adds constraints to the matching
algorithms, to minimise search space, and guides the
fusion and tracking process for future frames.

Figure 1 shows the system as a whole and the
flow of data between its parts. It is colour coded in the
following manner. Blue shows the creation of modelled
scene data, which describes the objects and the world they
live in. This is not necessarily a static description as the
objects can move about the scene. The camera is the view

taken by the missile itself as it evaluates the scene, so this
can also move within the scene. Red is the transferral of
‘real’ data to simulated sensor data, as data from the scene
is passed to our sensor models. This is where we alter the
highly accurate data obtained from the rendering, so that it
resembles the data that the sensors would output in the
real world. Green is the FLIR algorithms that extract the
object type and orientation from the 2D FLIR data through
template matching and shape descriptors. Yellow is the
LADAR algorithms that build the EGI and then model
match this to obtain the object type and orientation.
Brown are the fusion algorithms, where we use the TBM
to fuse the object types that the FLIR and LADAR sensor
matching algorithms provide us with, similarly the
Kalman filter fuses the pose. Purple shows the feedback
loops that provide information about the scene in some
way to influence decisions in the matching algorithms or
to update themselves with their ‘running total’ of type and
pose to this time instant.

5 The Data Fusion System

We have spent a great deal of time considering the
methodology to utilise for the fusing of object type match
data within our system. This plays a key role within the
system and has received careful consideration due to the
specific requirements of our system. Our system has to be
able to use data sets which may have complete loss over
certain frames for a particular sensor. We may have prior
information available that we would like to use if it is
available. We may also have an open world where our
database does not contain all possible matches. The
method we have chosen, the TBM, is capable of dealing
with all these scenarios, and supersedes previous
incarnations of DST. It also is shown to be an
improvement on the classical Bayesian approach. This
approach has not been used in such a scenario before and
so we have presented novel work, which is also open
source.

The Kalman filters have been used as
components in the system in a novel manner. They play a
dual role in fusing the pose estimates from the matching
algorithms, and also as a device for the tracking of the
objects pose over time. This works in parallel with the
TBM fusion of the object type, then together they form the
feedback loop to add control to the pose and type
matching algorithms in future frames.

5.1.1 TBM Fusion

The TBM presents a very capable method of
fusing data. It is able to combine information from two
distinct sources and allows for a great deal of flexibility in
its approach to doing so. Its appeal for use in a sensor
fusion target recognition scenario is its ability to cope well
with the type of measures that we can extract from our
scene. It handles lack of knowledge very well, and has the
useful ability to be able to incorporate prior knowledge if
and when it becomes available. In our scenario we often
find ourselves in the position that data from one or both
sensors is ambiguous. It also returns sensible results when



Figure 1. Data flow through the fusion system

 sensors are in conflict. Some fusion methods can falsely
weight their output when there is a lack of data or we are
unsure if its credibility, and also produce spurious results
when sensor conflicts occur, details of the TBM can be
found in previous work [3].

As far as we are aware, the TBM has not been
used in such a manner within the ATR field and as such
this work is novel. We use the TBM within part of a
feedback loop where its results are fed back to the system
to allow search spaces to be pruned and a better match to
be obtained. The information that we receive from our
LADAR and FLIR recognition processes are used as the
information that is entered into the TBM for fusing. Each
sensor outputs some data from which we try to obtain a
match for pose and type of our object. Accompanying the
match is a level of confidence; it is these measurements
that are used as our conditional plausibilities. They denote
the strength of the match for the object type. Through
fusing these two measures we can obtain a more robust
match to the type of object.

The conditional plausibilities provided by the FLIR and
LADAR sensor object type matching algorithms are
denoted SFn and SLn respectively for frame n. Our frame
of discernment, H, covers the basic types of object that we
require to match against, these been a Harrier GR7, an A-
10 Tankbuster and an F-15, creating the set H={GR7,
A10, F15}. Both sensor matching algorithms have
knowledge of all elements of H, so that HSFn ⊆ and

HSLn ⊆ . These conditional plausibilities are presented to

the Generalised Bayesian Transform (GBT) to obtain the
mass and, belief and plausibility functions. If we have
prior knowledge it is included at this point through
conjunctively combining the GBT result with the prior
information. The masses obtained from the GBT, mH[SLn]
and mH[SFn], for the two sensors are combined using the
conjunctive combination rule. A pignistic transform of the
mass distribution, obtained from this combination, will
provide us with the pignistic probability function, from
which we can see the result of fusing the outputs from the
two sensor algorithms. It is  this probability function that
we can then make our decision on. The output from the
TBM at this point is just the fusion of the matches for this
frame and so is denoted TBMn. Our system is an ongoing
process that receives data at each frame. To obtain the best
type match possible we utilise all data received so far.
This is achieved through a running TBM, for frames 1…n-
1 denoted as TBM1..n-1, into which we fuse the output from
TBMn. The results from TBMn are conjunctively combined
with the TBM1..n-1 to give TBM1..n. A pignistic transform is
then applied to the mass assignment of TBM1..n from
which we are able to make decisions. These decisions are
used to influence the direction that the algorithms use
when trying to find a match for the data from the sensors
at frame n+1.

5.2 Kalman Filter Fusion

The matching algorithms for the FLIR and LADAR
sensors output not only object type but also pose matches.
For each match that they output they also provide a
measure which represents the quality of that match, from
this we can find the best 5 matches from that algorithm,
for that sensor at that particular time instance. This
happens for both the FLIR and LADAR sensor matching
algorithms. Some how we need to combine all of this data
in a manner which allows us to establish the best estimate
of object pose at this time instant. For this we must fuse
the various observations that the algorithms have made.
The Kalman Filter is ideal for tracking and fusing pose
estimates.

5.2.1 Kalman Filter Tracking

In our system we implement a Kalman filter for the
tracking of our object. This allows us to pass the noisy
pose measurements to the filter, and for it to project
forward to the next time step using physical laws of object
motion. This is then used to guide the fusion process
where the current pose is determined from the LADAR
and FLIR sensor object matching algorithms as well as
correcting the filter.
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The filter works by using a feedback loop, in this loop the
filter estimates the system state and then uses the
measurements as a feedback. The Kalman filter equations
are of two types being time update and measurement
update. The time update is the forward projection of the
state estimate, apriori. The measurement update is through
the use of the feedback obtained form the measurements;
this in essence updates the estimate to produce a better
one, aposteriori. The equations for the time update are:-

kkk BuxAx += −
−

1ˆˆ              (1)

QAAPP T
kk += −

−
1                 (2)

Where −
kx̂ is the prior state estimate at step k and kx̂ being

the posterior state estimate at step k. The nn× matrix A
relates the state at k-1 to the current state k. The
ln× matrix B relates the optional control input u to the

state x. The matrix P is the error covariance estimate, a
priori being denoted by a super minus. Finally the matrix
Q being the process noise covariance. From Equation 1
and Equation 2 it can be seen how the current state
estimate and covariance error states are projected from
step k-1 to k to give the a prior estimates. The equations
for the measurement update are:-

1)( −−− += RHHPHPK T
k

T
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 Where the mn× matrix K is the Kalman gain, this is the
measure that minimises the posterior error covariance Pk.

What the Kalman gain does is to weight the filter toward
the incoming measurement or the posterior estimate. This
weighting being based on the measurement error
covariance, R, and the prior estimate error covariance,

−
kP . The value zk being the incoming measurement at step

k, and finally the nm× matrix H relates the state to the
measurement zk. From Equation 3 to Equation 5 we can
see that the prior measurements are being projected
forward to a posterior states.

5.2.2 Filter Design

To design our filter we looked at the information that the
fusion algorithms were able to output. The Kalman filter
that we use for fusing the pose estimates outputs a single
pose estimate for that time instance, also the tracking filter
will produce a projected posterior pose estimate. The pose
estimate produced from the fusion filter is used as the
measurement going into the tracking filter, and is what the
system thinks the next pose will be. The start state of our
object, in terms of pose, for the fusion filter is the
projected forward state obtained from the tracking filter
and form a part of the feedback loop, allowing the

tracking filter to guide the fusion process. The quality of
the match, obtained from the tracker and its covariance is
modelled with the matrix R. The smaller the values that
are entered here, the more the tracker will believe that the
incoming measurement, zk, is correct. The measurement, z,
is a vector with eight components, those being
(quaternionP{theta, x, y, z}, quaternionAV{theta, x, y, z}).
These components are in fact two quaternions, with
quaternianP describing the pose and quaternianAV

describing the angular velocity. The quaternion describing
angular velocity enables the filter to more reliably project
ahead to the next time step and to make a prior state
estimate. To calculate this we store the pose estimate for
previous time instances and find the difference:-

AngularVelocityk = Posek-1 – Posek-2 (6)

This can be made more accurate by using more pose
measurements, but we found that this worked well enough
and managed to react quickly to changes. We also
experimented with angular acceleration but found that
performance of the filter became less stable even though
its reaction time was improved.

The process noise covariance matrix, Q, is
assumed to be constant. The measurement, z, is directly
related to the state estimate, x, so the matrix, H, that
relates the measurement to the state is just an identity
matrix. The apriori error covariance matrix P and the inter
frame state relationship matrix A are also identity matrices
due to the direct relation between the measurement and
the state estimate. The initial state estimates are all unit
quaternions, this is an acceptable assumption, and doesn’t
have very much effect on the filter as it settles down after
a couple of frames. To fully test the tracking filter it was
implemented into a mouse driven tracker using OpenGL
to model an aircraft and give a visual feedback. Here the
user can control the ground truth pose using the mouse.
Noise is added to the ground truth to become the
measurement, quaternionP of the vector z, which is given
to the filter. In this way we are able to test and tune the
filter in terms of the how to project forward using
equations such as Equation 6.

5.2.3 Fusion Algorithm

To fuse the matches that have been obtained from both
sensors we use a Kalman filter. The matching algorithm
gives us the top five pose estimates from each sensor.
Along with an estimate of the pose a measure is provided
to signify the quality of that match. This is used to weight
each match through the adjustment of the measurement
error covariance matrix. At each frame, or set of matches,
a new filter is created. The initial state estimate entered
into the filter is taken as the a posteriori forward

projection, kx̂ , from the tracking filter. The angular

velocity derived from the tracking filter is not used as all
of the matches have occurred at the same time instance, so
the state is just a four component vector
quaternionP{thetaP, xP, yP, zP}, which is a quaternion
describing the objects pose. Then each match is
individually passed to the filter and updated.



After all of the matches have been added to the filter we
take the state estimate as being the prior state estimate

−
kx̂ . This gives us a current pose estimate based on the

matching algorithms outputs for both FLIR and LADAR
sensor. This can now be fed to the tracking Kalman filter.

6 Results

Results are presented for various object recognition
scenarios/sequences of frames. Results showing the
performance of the fusion algorithms for both the object
type and its orientation are shown.

6.1 TBM Data Fusion for object type
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Figure 2. BetP for matches from the FLIR sensor.
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Figure 3. BetP for matches from the LADAR sensor.
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Figure 4. BetP from the fusion of FLIR and LADAR
sensor matches at frame n.
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Figure 5. BetP from the fusion of the fused FLIR and
LADAR sensor matches for frames 1..n.

Figure 2 and Figure 3 show the results of fusing all the
FLIR matches together and the same with the LADAR
sensor. Both FLIR and LADAR sensor are in agreement
to the object that they are viewing. It can be seen that in
frames 1…7 both sensors are matching to an F15. This
then changes favour for an A10. Figure 4 shows the result
of fusing these two sensor matches outputs. Figure 5 is a
rolling fused total for the output of the fusion of all the
FLIR matches (Figure 2) and the fusion of all the LADAR
matches (Figure 3) up until that particular frame, and so is
the fusion, of all frames to framen, of the data shown in
Figure 4. It can be seen that it recovers well to the change
of object type that both sensors are suggesting we are
tracking.
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Figure 6. BetP for matches from the FLIR sensor.
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Figure 7. BetP for matches from the LADAR sensor.



Fused FLIR and LADAR
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Figure 8. BetP from the fusion of FLIR and LADAR
sensor matches at frame n.
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Figure 9. BetP from the fusion of the fused FLIR and
LADAR sensor matches for frames 1..n.

Figure 6 and Figure 7 show the results of the LADAR and
FLIR sensor been in disagreement between the F15 and
A10 and also that they both change what they believe they
are matching to over the time duration. Figure 8 shows the
fusion of the FLIR and LADAR sensor at each individual
frame. Over initial frames the GR7 is the strongest, when
the two sensors outputs have been combined, which then
gives way to the A10. This trend becomes even more
apparent when looking at the result of fusing all frames to
framen as shown in Figure 9. Here we can clearly see that
the A10 is the most prominent over the latter frames as its
dominance in the fused frames (Figure 8) from frame 10
onwards begins to take effect. It is also possible to
measure the disagreement between sensors, which can
then be used as an additional component for the decision
process. In this case we can see that both sensors are in
disagreement and a decision based purely on the fused
frames output may be unwise, or may need to be scaled in
some manner.
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Figure 10. BetP for matches from the FLIR sensor.

LADAR Sensor Match

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5 7 9 11 13 15 17 19

Frame

B
et

P

F15

GR7

A10

Figure 11. BetP for matches from the FLIR sensor.
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Figure 12. BetP from the fusion of FLIR and LADAR
sensor matches at frame n.
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Figure 13. BetP from the fusion of the fused FLIR and
LADAR sensor matches for frames 1..n.

Figure 10 shows FLIR drop out occurring in frames 16
and 17. A lot of data is lost by dropping frames in this
area as the BetP was heavily placed on the A10. This is
shown in Figure 12 as the BetP for the A10 falls as the
onus is put on the LADAR sensor, which is matching to
an F15 at this point, and so the F15 rises in probability.
Figure 13, which shows the rolling total, for fusing all
frames to framen, should be able to cope with this drop
out, even though it has happened at a significant point. A
slight drop is witnessed, but due to the trend of it been an
A10 in previous frames, the drop is not so that a change in
opinion of the match takes place.

Table 1 shows what has happened after fusing all
of the available data together for frame1…5 for the data
from Figure 12. By this point the basic belief assignments
(bba’s) have almost all been assigned to singletons, the
bba’s for the other sets are not zero, but are very small.
This is because the bba’s for the singletons have taken the
largest values after the conditional plausibilities have been



assigned to the singletons and then propagated using the
GBT for each individual frame for the FLIR and LADAR
TBM’s. Over time this has swayed the TBM, through
combination, to give larger bba’s for these values. This
measure is not added to the supersets in any way as the
bba is just the measure of how much that set and no sub or
super sets is supported. This is not the case for the belief,
where the values are propogated to the supersets of the
singletons. As can be seen in Table 1 the belief for the
frame of discernment is 1, denoting that we are sure that
the correct match is in here somewhere. It can also be
noted that the belief, plausibility and BetP are the same for
all sets, this is because only the singleton bba’s have
noticeable values, and so the TBM resorts to a Bayesian
probability.

Set Cond Plaus Bba Belief Plausibility BetP
{∅} 0 0 0 0 0

{F15} 0 0.28153 0.281 0.28153 0.281
{GR7} 0 0.58709 0.587 0.58709 0.587

{F15,GR7} 0 0 0.868 0.86862 0.868
{A10} 0 0.13138 0.131 0.13138 0.131

{F15,A10} 0 0 0.412 0.41291 0.412
{GR7,A10} 0 0 0.718 0.71847 0.718
{F15,GR7,,

A10}
0 0 1 1 1

Table 1. Values for Fusing the fused FLIR and LADAR
sensor matches up to frame 5 for Figure 10 to Figure 14

6.2 Kalman filter fusion for object pose

Matching the orientation of an object is done using
quaternions and so the data presented to the Kalman filter
are the x, y, z components of the axis that the object is
rotating about and theta, the angle that it rotates about that
axis. The error matrix in the Kalman filter indicates to the
filter how much we believe in the measurement that we
are providing it with. This is obtained from the match
quality returned from the matching algorithms.

Figure 14 and Figure 15 show two of the
components from the orientation quaternion for the overall
result from the Kalman filter fusion algorithms. At each
frame the filter receives data, which is the result of fusing
the FLIR and LADAR match results within a separate
Kalman filter, which it fuses to its current best estimate of
the orientation. This best estimate is obtained by fusing all
previous frames. For clarity two of the components of the
quaternion are graphed individually. Looking at Figure 14
and Figure 15 we can see that the fused FLIR and
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via a Kalman filter.

LADAR data (purple line) is noisy, and this is the result of
the matching process not been completely accurate. This
is to be expected, and the smoothing of this data is the
purpose of fusing it together within the Kalman filter. The
Kalman filtered data (blue line) is the result of fusing all
of the available data to this point. Due to the use of the
Kalman filter we also project ahead to the next frame and
track the object through this medium. Figure 14 and
Figure 15 represent the object making a banking turn. The
fused tracking of this object works well through the whole
of the banked turn particularly so in the x axis of rotation
where we can see that the algorithms are having slightly
more trouble gaining a consistent result due to the x-axis
having the most rotation, and thus noise, in this banking
manoeuvre.

7 Conclusions

We have looked at the fusion of data from disparate
sources for the recognition of airborne objects. We have
demonstrated our methodologies for the solving of this
complex problem. We have achieved a system that can
competently fuse data from LADAR and FLIR sensors to
achieve a better overall match to the object we want to
pursue.

We believe our choice of system to be the best
fusion system for our scenario. This came about through
good research, design and testing. Initial research and
readings were on Bayesian analysis of data and DST. We
decided that the DST provided us with a better formula for
describing knowledge within our model, mainly through
being able to model complete ignorance, without the need
for a prior information. Initial tests of the DST, and
continued research, found that there were some weak
areas within the DST. Amongst these short fallings was its
inability to look at open world scenarios, and to
incorporate a prior information properly. We discovered,
work done by Smets, that was an extension of Dempster’s
original work, that encapsulated such points within it. We
chose to adopt and adapt some of Smets’ work for our
own system and incorporated it into the system to fuse the
data from the FLIR and LADAR sensors. This work was
new to the fusion arena for air-to-air missile target
recognition applications and was published in 2003 [3].

The Kalman Filter is not a new piece of
technology by any means, but its due to its tried and



trustedness that we chose to use it for our fusion and
tracking. It is adaptable to track rotations through the use
of quaternions, and can be used to fuse matches as well.
Results of the Kalman filter system were good and even
the multiple filter system ran impressively fast, making for
a very good demonstration piece of software.

Overall the system has proven itself to be able to
simulate data, recognise objects and fuse information
successfully. Future work for the system as a whole would
be aimed at improving the detection phase, so that
segmentation could be more intelligent. Also the LADAR
recognition phase could be altered, or possibly run on a
more powerful machine to allow for an increase in
accuracy while not making the run time of the program
unacceptable.
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